Skip to main content
Log in

No juvenile arterial hypertension in sheep multiples despite reduced nephron numbers

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Low birth weight is associated with an increased risk of metabolic dysfunction and arterial hypertension in later life. Because of their reduced birth weight twins have been used repeatedly as a natural model to investigate prenatal programming of hypertension. To reveal an early impact of lower nephron endowment on blood pressure, we performed a longitudinal study on lambs from single, twin and triplet pregnancies. The lambs were studied from birth until adulthood, including regular blood analyses, measurements of body weight and blood pressure and post-mortem estimation of glomerular numbers. Relative weight differences between multiples and singletons at birth were −28% for twins and −44% for triplets, respectively. Some lambs showed rapid catch-up growth. Total nephron number of twins and triplets was reduced by 21 and 37% with respect to that of singletons (p < 0.01). However, multiples did not show increased blood pressure within the time frame of this study. No gender-specific effect was observed. Plasma concentrations of creatinine, urea, electrolytes or osmolality also did not differ. Our data indicate that the previously reported postnatal blood pressure differences between sheep multiples and singletons are a time-limited phenomenon. During infancy and adolescence, a reduced nephron number in sheep multiples is neither associated with increased blood pressure nor reflected by plasma parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

IUGR:

intrauterine growth restriction

References

  1. Shankaran S, Das A, Bauer CR, Bada H, Lester B, Wright L, Higgins R, Poole K (2006) Fetal origin of childhood disease: intrauterine growth restriction in term infants and risk for hypertension at 6 years of age. Arch Pediatr Adolesc Med 160:977–981

    Article  PubMed  Google Scholar 

  2. Ream M, Ray AM, Chandra R, Chikaraishi DM (2008) Early fetal hypoxia leads to growth restriction and myocardial thinning. Am J Physiol 295:R583–R595

    CAS  Google Scholar 

  3. Bubb KJ, Cock ML, Black MJ, Dodic M, Boon WM, Parkington HC, Harding R, Tare M (2007) Intrauterine growth restriction delays cardiomyocyte maturation and alters coronary artery function in the fetal sheep. J Physiol 578:871–881

    Article  CAS  PubMed  Google Scholar 

  4. Pesonen E, Johnsson J, Berg A (2006) Intimal thickness of the coronary arteries in low-birthweight infants. Acta Paediatr 95:1234–1238

    Article  PubMed  Google Scholar 

  5. Hales CN, Barker DJ, Clark PM, Cox LJ, Fall C, Osmond C, Winter PD (1991) Fetal and infant growth and impaired glucose tolerance at age 64. Br Med J 303:1019–1022

    Article  CAS  Google Scholar 

  6. Vikse BE, Irgens LM, Leivestad T, Hallan S, Iversen BM (2008) Low birth weight increases risk for end-stage renal disease. J Am Soc Nephrol 19:151–157

    Article  PubMed  Google Scholar 

  7. Barker DJ (1995) Fetal origins of coronary heart disease. Br Med J 311:171–174

    CAS  Google Scholar 

  8. Ravelli GP, Stein ZA, Susser MW (1976) Obesity in young men after famine exposure in utero and early infancy. N Engl J Med 295:349–353

    Article  CAS  PubMed  Google Scholar 

  9. Hinchliffe SA, Sargent PH, Howard CV, Chan YF, van Velzen D (1991) Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle. Lab Invest 64:777–784

    CAS  PubMed  Google Scholar 

  10. Manalich R, Reyes L, Herrera M, Melendi C, Fundora I (2000) Relationship between weight at birth and the number and size of renal glomeruli in humans: a histomorphometric study. Kidney Int 58:770–773

    Article  Google Scholar 

  11. Hughson M, Farris AB 3rd, Douglas-Denton R, Hoy WE, Bertram JF (2003) Glomerular number and size in autopsy kidneys: the relationship to birth weight. Kidney Int 63:2113–2122

    Article  PubMed  Google Scholar 

  12. Keller G, Zimmer G, Mall G, Ritz E, Amann K (2003) Nephron number in patients with primary hypertension. N Engl J Med 348:101–108

    Article  PubMed  Google Scholar 

  13. Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347

    CAS  PubMed  Google Scholar 

  14. Morrison JL (2008) Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol 35:730–743

    Article  CAS  PubMed  Google Scholar 

  15. Vuguin PM (2007) Animal models for small for gestational age and fetal programming of adult disease. Horm Res 68:113–123

    Article  CAS  PubMed  Google Scholar 

  16. Ross MG, Desai M, Guerra C, Wang S (2005) Prenatal programming of hypernatremia and hypertension in neonatal lambs. Am J Physiol 288:R97–R103

    CAS  Google Scholar 

  17. Bains RK, Sibbons PD, Murray RD, Howard CV, Van Velzen D (1996) Stereological estimation of the absolute number of glomeruli in the kidneys of lambs. Res Vet Sci 60:122–125

    Article  CAS  PubMed  Google Scholar 

  18. Lucas SR, Costa Silva VL, Miraglia SM, Zaladek Gil F (1997) Functional and morphometric evaluation of offspring kidney after intrauterine undernutrition. Pediatr Nephrol 11:719–723

    Article  CAS  PubMed  Google Scholar 

  19. Bassan H, Trejo LL, Kariv N, Bassan M, Berger E, Fattal A, Gozes I, Harel S (2000) Experimental intrauterine growth retardation alters renal development. Pediatr Nephrol 15:192–195

    Article  CAS  PubMed  Google Scholar 

  20. Bauer R, Walter B, Bauer K, Klupsch R, Patt S, Zwiener U (2002) Intrauterine growth restriction reduces nephron number and renal excretory function in newborn piglets. Acta Physiol Scand 176:83–90

    Article  CAS  PubMed  Google Scholar 

  21. Jones SE, Nyengaard JR, Flyvbjerg A, Bilous RW, Marshall SM (2001) Birth weight has no influence on glomerular number and volume. Pediatr Nephrol 16:340–345

    Article  CAS  PubMed  Google Scholar 

  22. Mitchell EK, Louey S, Cock ML, Harding R, Black MJ (2004) Nephron endowment and filtration surface area in the kidney after growth restriction of fetal sheep. Pediatr Res 55:769–773

    Article  PubMed  Google Scholar 

  23. Wallace JM, Regnault TR, Limesand SW, Hay WW, Anthony RV (2005) Investigating the causes of low birth weight in contrasting ovine paradigms. J Physiol 565:19–26

    Article  CAS  PubMed  Google Scholar 

  24. Muhlhausler BS, McMillen IC, Rouzaud G, Findlay PA, Marrocco EM, Rhind SM, Adam CL (2004) Appetite regulatory neuropeptides are expressed in the sheep hypothalamus before birth. J Neuroendocrinol 16:502–507

    Article  CAS  PubMed  Google Scholar 

  25. Weibel ER, Gomez DM (1962) A principle for counting tissue structures on random sections. J Appl Physiol 17:343–348

    CAS  PubMed  Google Scholar 

  26. Haas CS, Amann K, Schittny J, Blaser B, Müller U, Hartner A (2003) Glomerular and renal vascular structural changes in α8 integrin-deficient mice. J Am Soc Nephrol 14:2288–2296

    Article  CAS  PubMed  Google Scholar 

  27. Galan HL, Anthony RV, Rigano S, Parker TA, de Vrijer B, Ferrazzi E, Wilkening RB, Regnault TR (2005) Fetal hypertension and abnormal Doppler velocimetry in an ovine model of intrauterine growth restriction. Am J Obstet Gynecol 192:272–279

    Article  PubMed  Google Scholar 

  28. Gilbert JS, Lang AL, Grant AR, Nijland MJ (2005) Maternal nutrient restriction in sheep: hypertension and decreased nephron number in offspring at 9 months of age. J Physiol 565:137–147

    Article  CAS  PubMed  Google Scholar 

  29. Hinchliffe SA, Lynch MR, Sargent PH, Howard CV, Van Velzen D (1992) The effect of intrauterine growth retardation on the development of renal nephrons. Br J Obstet Gynaecol 99:296–301

    CAS  PubMed  Google Scholar 

  30. Buzello M (2000) Comparison of two stereological methods for quantitative renal morphology: a modified fractionator and modified Weibel-Gomez method. Pathol Res Pract 196:111–117

    CAS  PubMed  Google Scholar 

  31. Merlet-Benichou C, Gilbert T, Muffat-Joly M, Lelievre-Pegorier M, Leroy B (1994) Intrauterine growth retardation leads to a permanent nephron deficit in the rat. Pediatr Nephrol 8:175–180

    Article  CAS  PubMed  Google Scholar 

  32. Damadian RV, Shwayri E, Bricker NS (1965) On the existence of non-urine forming nephrons in the diseased kidney of the dog. J Lab Clin Med 65:26–39

    CAS  PubMed  Google Scholar 

  33. de Geus EJ, Posthuma D, Ijzerman RG, Boomsma DI (2001) Comparing blood pressure of twins and their singleton siblings: being a twin does not affect adult blood pressure. Twin Res 4:385–391

    Article  PubMed  Google Scholar 

  34. Moritz KM, Jefferies A, Wong J, Wintour EM, Dodic M (2005) Reduced renal reserve and increased cardiac output in adult female sheep uninephrectomized as fetuses. Kidney Int 67:822–828

    Article  PubMed  Google Scholar 

  35. McMurphy RM, Stoll MR, McCubrey R (2006) Accuracy of an oscillometric blood pressure monitor during phenylephrine-induced hypertension in dogs. Am J Vet Res 67:1541–1545

    Article  PubMed  Google Scholar 

  36. Henke J, Pragst I, Zahn P, Egner B, Erhardt W (2000) Oscillometric (MEMOPRINT. S+BmedVET) vs. intra-arterial (SIEMENS SIRECUST) blood pressure measurement in anesthetized dogs. Kleintierpraxis 45:661–666

    Google Scholar 

  37. De Matteo R, Stacy V, Probyn M, Desai M, Ross M, Harding R (2008) The perinatal development of arterial pressure in sheep: effects of low birth weight due to twinning. Reprod Sci 15:66–74

    Article  PubMed  Google Scholar 

  38. Douglas-Denton RN, McNamara BJ, Hoy WE, Hughson MD, Bertram JF (2006) Does nephron number matter in the development of kidney disease? Ethn Dis 16[Suppl 2]:40–45

    Google Scholar 

  39. Nyengaard JR, Bendtsen TF (1992) Glomerular number and size in relation to age, kidney weight, and body surface in normal man. Anat Rec 232:194–201

    Article  CAS  PubMed  Google Scholar 

  40. Schreuder MF, van Wijk JA, Delemarre-van de Waal HA (2006) Intrauterine growth restriction increases blood pressure and central pulse pressure measured with telemetry in aging rats. J Hypertens 24:1337–1343

    Article  CAS  PubMed  Google Scholar 

  41. Gurnani A, Nenov VD, Taal MW, Troy JL, Mackenzie HS, Brenner BM (2000) Congenital nephron deficit (first hit) predicts increased renal injury in uninephrectomized rats (second hit). American Society of Nephrology, Renal Week, Toronto, no. A3268

  42. Duncan RC, Bass PS, Garrett PJ, Dathan JR (1994) Weight at birth and other factors influencing progression of idiopathic membranous nephropathy. Nephrol Dial Transplant 9:875

    CAS  PubMed  Google Scholar 

  43. Zidar N, Cavic MA, Kenda RB, Koselj M, Ferluga D (1998) Effect of intrauterine growth retardation on the clinical course and prognosis of IgA glomerulonephritis in children. Nephron 79:28–32

    Article  CAS  PubMed  Google Scholar 

  44. Wlodek ME, Mibus A, Tan A, Siebel AL, Owens JA, Moritz KM (2007) Normal lactational environment restores nephron endowment and prevents hypertension after placental restriction in the rat. J Am Soc Nephrol 18:1688–1696

    Article  CAS  PubMed  Google Scholar 

  45. Boubred F, Buffat C, Feuerstein JM, Daniel L, Tsimaratos M, Oliver C, Lelievre-Pegorier M, Simeoni U (2007) Effects of early postnatal hypernutrition on nephron number and long-term renal function and structure in rats. Am J Physiol Renal Physiol 293:F1944–F1949

    Article  CAS  PubMed  Google Scholar 

  46. McMillen IC, Roninson JS (2005) Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev 85:571–633

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Bernard, M. Klewer, M. Reutelshöfer, B. Nitzsche and S. Söllner for technical assistance and Prof. Dr. W. Rascher (Children’s Hospital Erlangen) for critical reading of the manuscript.

Statement of financial support

Part of the study was supported by the German Research Foundation (SFB 423, project Z2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holm Schneider.

Additional information

Anja Mühle and Christiane Mühle contributed equally to this study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühle, A., Mühle, C., Amann, K. et al. No juvenile arterial hypertension in sheep multiples despite reduced nephron numbers. Pediatr Nephrol 25, 1653–1661 (2010). https://doi.org/10.1007/s00467-010-1512-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-010-1512-3

Keywords

Navigation