Skip to main content

Advertisement

Log in

Proteinuria and events beyond the slit

  • Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The origin of proteinuria is found in either the glomerular filtration device or the proximal tubular reabsorption machinery. During equilibrium, small amounts of predominantly low molecular weight proteins are filtered and reabsorbed by the receptor complex megalin/cubilin/amnionless. This results in a protein-free filtrate passing further down the tubule. During glomerular damage, the reabsorption machinery in the proximal tubule is challenged due to elevated amounts of proteins passing the glomerular filtration slits. Even though it is considered to be a high-capacity system, several conditions result in proteinuria, thus exposing the cells in the rest of the nephron to a protein-rich environment. The impact on cells in the more distal part of the nephron is uncertain, but studies support an involvement in fibrosis development. Protein accumulation in lysosomes of the proximal tubule, due to increased protein internalization, is thought to mediate inflammation and fibrosis, eventually leading to renal failure. In contrast, low molecular weight proteinuria develops when the endocytic machinery is malfunctioning either by direct or indirect causes such as in Imerslund-Gräsbeck syndrome (IGS) or Dent’s disease, respectively. This review discusses the origin of proteinuria and describes the structural fundament for protein reabsorption in the proximal tubule as well as conditions resulting in low molecular weight proteinuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

IGS:

Imerslund-Gräsbeck syndrome

DB/FOAR:

Donnai-Barrow/facio-oculo-acoustico-renal

AMN:

Amnionless

LDL:

Low-density lipoprotein

RAP:

Receptor-associated protein

RBP:

Retinol-binding protein

DBP:

Vitamin-D-binding protein

References

  1. Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3:256–266

    CAS  PubMed  Google Scholar 

  2. Christensen EI, Verroust PJ, Nielsen R (2009) Receptor-mediated endocytosis in renal proximal tubule. Pflugers Arch 458:1039–1048

    Article  CAS  PubMed  Google Scholar 

  3. Kerjaschki D, Farquhar MG (1982) The pathogenic antigen of Heymann nephritis is a membrane glycoprotein of the renal proximal tubule brush border. Proc Natl Acad Sci USA 79:5557–5581

    Article  CAS  PubMed  Google Scholar 

  4. Kerjaschki D, Farquhar MG (1983) Immunocytochemical localization of the Heymann nephritis antigen (GP330) in glomerular epithelial cells of normal Lewis rats. J Exp Med 157:667–686

    Article  CAS  PubMed  Google Scholar 

  5. Raychowdhury R, Niles JL, McCluskey RT, Smith JA (1989) Autoimmune target in Heymann nephritis is a glycoprotein with homology to the LDL receptor. Science 244:1163–1165

    Article  CAS  PubMed  Google Scholar 

  6. Saito A, Pietromonaco S, Loo AK, Farquhar MG (1994) Complete cloning and sequencing of rat gp330/“megalin”, a distinctive member of the low density lipoprotein receptor gene family. Proc Natl Acad Sci USA 91:9725–9729

    Article  CAS  PubMed  Google Scholar 

  7. Hjalm G, Murray E, Crumley G, Harazim W, Lundgren S, Onyango I, Ek B, Larsson M, Juhlin C, Hellman P, Davis H, Akerstrom G, Rask L, Morse B (1996) Cloning and sequencing of human gp330, a Ca(2+)-binding receptor with potential intracellular signaling properties. Eur J Biochem 239:132–137

    Article  CAS  PubMed  Google Scholar 

  8. Fass D, Blacklow S, Kim PS, Berger JM (1997) Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module. Nature 388:691–693

    Article  CAS  PubMed  Google Scholar 

  9. Russell DW, Brown MS, Goldstein JL (1989) Different combinations of cysteine-rich repeats mediate binding of low density lipoprotein receptor to two different proteins. J Biol Chem 264:21682–21688

    CAS  PubMed  Google Scholar 

  10. Davis CG, Goldstein JL, Sudhof TC, Anderson RG, Russell DW, Brown MS (1987) Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature 326:760–765

    Article  CAS  PubMed  Google Scholar 

  11. Takeda T, Yamazaki H, Farquhar MG (2003) Identification of an apical sorting determinant in the cytoplasmic tail of megalin. Am J Physiol Cell Physiol 284:C1105–C1113

    CAS  PubMed  Google Scholar 

  12. Baines RJ, Brunskill NJ (2008) The molecular interactions between filtered proteins and proximal tubular cells in proteinuria. Nephron Exp Nephrol 110:e67–e71

    Article  CAS  PubMed  Google Scholar 

  13. Yuseff MI, Farfan P, Bu G, Marzolo MP (2007) A cytoplasmic PPPSP motif determines megalin’s phosphorylation and regulates receptor’s recycling and surface expression. Traffic 8:1215–1230

    Article  CAS  PubMed  Google Scholar 

  14. Oleinikov AV, Zhao J, Makker SP (2000) Cytosolic adaptor protein Dab2 is an intracellular ligand of endocytic receptor gp600/megalin. Biochem J 347:613–621

    Article  CAS  PubMed  Google Scholar 

  15. Morris SM, Tallquist MD, Rock CO, Cooper JA (2002) Dual roles for the Dab2 adaptor protein in embryonic development and kidney transport. EMBO J 21:1555–1564

    Article  CAS  PubMed  Google Scholar 

  16. Nagai J, Christensen EI, Morris SM, Willnow TE, Cooper JA, Nielsen R (2005) Mutually-dependent localization of megalin and Dab2 in the renal proximal tubule. Am J Physiol Renal Physiol 289:F569–F576

    Article  CAS  PubMed  Google Scholar 

  17. Seetharam B, Christensen EI, Moestrup SK, Hammond TG, Verroust PJ (1997) Identification of rat yolk sac target protein of teratogenic antibodies, gp280, as intrinsic factor-cobalamin receptor. J Clin Invest 99:2317–2322

    Article  CAS  PubMed  Google Scholar 

  18. Seetharam B, Levine JS, Ramasamy M, Alpers DH (1988) Purification, properties, and immunochemical localization of a receptor for intrinsic factor-cobalamin complex in the rat kidney. J Biol Chem 263:4443–4449

    CAS  PubMed  Google Scholar 

  19. Kristiansen M, Kozyraki R, Jacobsen C, Nexø E, Verroust PJ, Moestrup SK (1999) Molecular dissection of the intrinsic factor-vitamin B12 receptor, cubilin, discloses regions important for membrane association and ligand binding. J Biol Chem 274:20540–20544

    Article  CAS  PubMed  Google Scholar 

  20. Kozyraki R, Kristiansen M, Silahtaroglu A, Hansen C, Jacobsen C, Tommerup N, Verroust PJ, Moestrup SK (1998) The human intrinsic factor-vitamin B12 receptor, cubilin: molecular characterization and chromosomal mapping of the gene to 10p within the autosomal recessive megaloblastic anemia (MGA1) region. Blood 91:3593–3600

    CAS  PubMed  Google Scholar 

  21. Moestrup SK, Kozyraki R, Kristiansen M, Kaysen JH, Rasmussen HH, Brault D, Pontillon F, Goda FO, Christensen EI, Hammond TG, Verroust PJ (1998) The intrinsic factor-vitamin B12 receptor and target of teratogenic antibodies is a megalin-binding peripheral membrane protein with homology to developmental proteins. J Biol Chem 273:5235–5242

    Article  CAS  PubMed  Google Scholar 

  22. Ahuja R, Yammani R, Bauer JA, Kalra S, Seetharam S, Seetharam B (2008) Interactions of cubilin with megalin and the product of the amnionless gene (AMN): effect on its stability. Biochem J 410:301–308

    Article  CAS  PubMed  Google Scholar 

  23. Yammani RR, Seetharam S, Seetharam B (2001) Cubilin and megalin expression and their interaction in the rat intestine: effect of thyroidectomy. Am J Physiol Endocrinol Metab 281:E900–E907

    CAS  PubMed  Google Scholar 

  24. Coudroy G, Gburek J, Kozyraki R, Madsen M, Trugnan G, Moestrup SK, Verroust PJ, Maurice M (2005) Contribution of cubilin and amnionless to processing and membrane targeting of cubilin-amnionless complex. J Am Soc Nephrol 16:2330–2337

    Article  CAS  PubMed  Google Scholar 

  25. Fyfe JC, Madsen M, Hojrup P, Christensen EI, Tanner SM, de La Chapelle A, He Q, Moestrup SK (2004) The functional cobalamin (vitamin B12)-intrinsic factor receptor is a novel complex of cubilin and amnionless. Blood 103:1573–1579

    Article  CAS  PubMed  Google Scholar 

  26. Tanner SM, Aminoff M, Wright FA, Liyanarachchi S, Kuronen M, Saarinen A, Massika O, Mandel H, Broch H, de La Chapelle A (2003) Amnionless, essential for mouse gastrulation, is mutated in recessive hereditary megaloblastic anemia. Nat Genet 33:426–429

    Article  CAS  PubMed  Google Scholar 

  27. Kalantry S, Manning S, Haub O, Tomihara-Newberger C, Lee HG, Fangman J, Disteche CM, Manova K, Lacy E (2001) The amnionless gene, essential for mouse gastrulation, encodes a visceral-endoderm-specific protein with an extracellular cysteine-rich domain. Nat Genet 27:412–416

    Article  CAS  PubMed  Google Scholar 

  28. Chatelet F, Brianti E, Ronco P, Roland J, Verroust P (1986) Ultrastructural localization by monoclonal antibodies of brush border antigens expressed by glomeruli. I. Renal distribution. Am J Pathol 122:500–511

    CAS  PubMed  Google Scholar 

  29. Christensen EI, Nielsen S, Moestrup SK, Borre C, Maunsbach AB, de Heer E, Ronco P, Hammond TG, Verroust P (1995) Segmental distribution of the endocytosis receptor gp330 in renal proximal tubules. Eur J Cell Biol 66:349–364

    CAS  PubMed  Google Scholar 

  30. Christensen EI, Birn H, Verroust P, Moestrup SK (1998) Membrane receptors for endocytosis in the renal proximal tubule. Int Rev Cytol 180:237–284

    Article  CAS  PubMed  Google Scholar 

  31. Christensen EI (1982) Rapid membrane recycling in renal proximal tubule cells. Eur J Cell Biol 29:43–49

    CAS  PubMed  Google Scholar 

  32. Sahali D, Mulliez N, Chatelet F, Dupuis R, Ronco P, Verroust P (1988) Characterization of a 280-kD protein restricted to the coated pits of the renal brush border and the epithelial cells of the yolk sac. Teratogenic effect of the specific monoclonal antibodies. J Exp Med 167:213–218

    Article  CAS  PubMed  Google Scholar 

  33. Sahali D, Mulliez N, Chatelet F, Laurent-Winter C, Citadelle D, Sabourin JC, Roux C, Ronco P, Verroust P (1993) Comparative immunochemistry and ontogeny of two closely related coated pit proteins. The 280-kd target of teratogenic antibodies and the 330-kd target of nephritogenic antibodies. Am J Pathol 142:1654–1667

    CAS  PubMed  Google Scholar 

  34. Bu G, Geuze HJ, Strous GJ, Schwartz AL (1995) 39 kDa receptor-associated protein is an ER resident protein and molecular chaperone for LDL receptor-related protein. EMBO J 14:2269–2280

    CAS  PubMed  Google Scholar 

  35. Willnow TE, Rohlmann A, Horton J, Otani H, Braun JR, Hammer RE, Herz J (1996) RAP, a specialized chaperone, prevents ligand-induced ER retention and degradation of LDL receptor-related endocytic receptors. EMBO J 15:2632–2639

    CAS  PubMed  Google Scholar 

  36. Willnow TE, Armstrong SA, Hammer RE, Herz J (1995) Functional expression of low density lipoprotein receptor- related protein is controlled by receptor-associated protein in vivo. Proc Natl Acad Sci USA 92:4537–4541

    Article  CAS  PubMed  Google Scholar 

  37. Kozyraki R, Fyfe J, Verroust PJ, Jacobsen C, Dautry-Varsat A, Gburek J, Willnow TE, Christensen EI, Moestrup SK (2001) Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. Proc Natl Acad Sci USA 98:12491–12496

    Article  CAS  PubMed  Google Scholar 

  38. Kozyraki R, Fyfe J, Kristiansen M, Gerdes C, Jacobsen C, Cui S, Christensen EI, Aminoff M, de la Chapelle A, Krahe R, Verroust PJ, Moestrup SK (1999) The intrinsic factor-vitamin B12 receptor, cubilin, is a high-affinity apolipoprotein A-I receptor facilitating endocytosis of high-density lipoprotein. Nat Med 5:656–661

    Article  CAS  PubMed  Google Scholar 

  39. Hammad SM, Barth JL, Knaak C, Argraves WS (2000) Megalin acts in concert with cubilin to mediate endocytosis of high density lipoproteins. J Biol Chem 275:12003–12008

    Article  CAS  PubMed  Google Scholar 

  40. Christensen EI, Willnow TE (1999) Essential role of megalin in renal proximal tubule for vitamin homeostasis. J Am Soc Nephrol 10:2224–2236

    CAS  PubMed  Google Scholar 

  41. Birn H, Christensen EI (2006) Renal albumin absorption in physiology and pathology. Kidney Int 69:440–449

    Article  CAS  PubMed  Google Scholar 

  42. Mogensen CE (1971) Urinary albumin excretion in diabetes. Lancet 2:601–602

    CAS  PubMed  Google Scholar 

  43. Mogensen CE (1984) Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med 310:356–360

    Article  CAS  PubMed  Google Scholar 

  44. Russo LM, Sandoval RM, McKee M, Osicka TM, Collins AB, Brown D, Molitoris BA, Comper WD (2007) The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int 71:504–513

    Article  CAS  PubMed  Google Scholar 

  45. Christensen EI, Birn H, Rippe B, Maunsbach AB (2007) Controversies in nephrology: renal albumin handling, facts, and artifacts! Kidney Int 72:1192–1194

    Article  CAS  PubMed  Google Scholar 

  46. Remuzzi A, Sangalli F, Fassi A, Remuzzi G (2007) Albumin concentration in the Bowman’s capsule: multiphoton microscopy vs micropuncture technique. Kidney Int 72:1410–1411

    Article  CAS  PubMed  Google Scholar 

  47. Gekle M (2007) Renal albumin handling: a look at the dark side of the filter. Kidney Int 71:479–481

    Article  CAS  PubMed  Google Scholar 

  48. de Borst MH (2007) On the origin of albuminuria. Kidney Int 72:1409–1410

    Article  PubMed  Google Scholar 

  49. Tanner GA (2009) Glomerular sieving coefficient of serum albumin in the rat: a two-photon microscopy study. Am J Physiol Renal Physiol 296:F1258–F1265

    Article  CAS  PubMed  Google Scholar 

  50. Peti-Peterdi J (2009) Independent two-photon measurements of albumin GSC give low values. Am J Physiol Renal Physiol 296:F1255–F1257

    Article  CAS  PubMed  Google Scholar 

  51. Abbate M, Zoja C, Remuzzi G (2006) How does proteinuria cause progressive renal damage? J Am Soc Nephrol 17:2974–2984

    Article  CAS  PubMed  Google Scholar 

  52. Kriz W, LeHir M (2005) Pathways to nephron loss starting from glomerular diseases-insights from animal models. Kidney Int 67:404–419

    Article  PubMed  Google Scholar 

  53. Nielsen R, Courtoy PJ, Jacobsen C, Dom G, Lima WR, Jadot M, Willnow TE, Devuyst O, Christensen EI (2007) Endocytosis provides a major alternative pathway for lysosomal biogenesis in kidney proximal tubular cells. Proc Natl Acad Sci USA 104:5407–5412

    Article  CAS  PubMed  Google Scholar 

  54. Oliver J, MacDowell M, Lee YC (1954) Cellular mechanisms of protein metabolism in the nephron. J Exp Med 99:589–604

    Article  CAS  PubMed  Google Scholar 

  55. Nykjær A, Dragun D, Walther D, Vorum H, Jacobsen C, Herz J, Melsen F, Christensen EI, Willnow TE (1999) An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Cell 96:507–515

    Article  PubMed  Google Scholar 

  56. Nykjaer A, Fyfe JC, Kozyraki R, Leheste JR, Jacobsen C, Nielsen MS, Verroust PJ, Aminoff M, de la Chapelle A, Moestrup SK, Ray R, Gliemann J, Willnow TE, Christensen EI (2001) Cubilin dysfunction causes abnormal metabolism of the steroid hormone 25(OH) vitamin D(3). Proc Natl Acad Sci USA 98:13895–13900

    Article  CAS  PubMed  Google Scholar 

  57. Christensen EI, Moskaug JO, Vorum H, Jacobsen C, Gundersen TE, Nykjær A, Blomhoff R, Willnow TE, Moestrup SK (1999) Evidence for an essential role of megalin in transepithelial transport of retinol. J Am Soc Nephrol 10:685–695

    CAS  PubMed  Google Scholar 

  58. Moestrup SK, Birn H, Fischer PB, Petersen CM, Verroust PJ, Sim RB, Christensen EI, Nexø E (1996) Megalin-mediated endocytosis of transcobalamin-vitamin-B12 complexes suggests a role of the receptor in vitamin-B12 homeostasis. Proc Natl Acad Sci USA 93:8612–8617

    Article  CAS  PubMed  Google Scholar 

  59. Straus W (1964) Occurrence of phagosomes and phago-lysosomes in different segments of the nephron in relation to the reabsorption, transport, digestion, and extrusion of intravenously injected horseradish peroxidase. J Cell Biol 21:295–308

    Article  CAS  PubMed  Google Scholar 

  60. Christensen EI, Carone FA, Rennke HG (1981) Effect of molecular charge on endocytic uptake of ferritin in renal proximal tubule cells. Lab Invest 44:351–358

    CAS  PubMed  Google Scholar 

  61. Madsen KM, Harris RH, Tisher CC (1982) Uptake and intracellular distribution of ferritin in the rat distal convoluted tubule. Kidney Int 21:354–361

    Article  CAS  PubMed  Google Scholar 

  62. Kastner C, Pohl M, Sendeski M, Stange G, Wagner CA, Jensen B, Patzak A, Bachmann S, Theilig F (2009) Effects of receptor-mediated endocytosis and tubular protein composition on volume retention in experimental glomerulonephritis. Am J Physiol Renal Physiol 296:F902–F911

    Article  CAS  PubMed  Google Scholar 

  63. Imerslund O (1960) Idiophatic chronic megaloblastic anemia in children. Acta Paediatr Suppl 49(Suppl. 119):1–115

    PubMed  Google Scholar 

  64. Grasbeck R, Gordin R, Kantero I, Kuhlbäck B (1960) Selective vitamin B12 malabsorption and proteinuria in young people. A syndrome. Acta Med Scand 167:289–296

    Article  CAS  PubMed  Google Scholar 

  65. Grasbeck R (2006) Imerslund-Grasbeck syndrome (selective vitamin B12 malabsorption with proteinuria). Orphanet J Rare Dis 1:1–6

    Google Scholar 

  66. Aminoff M, Carter JE, Chadwick RB, Johnson C, Grasbeck R, Abdelaal MA, Broch H, Jenner LB, Verroust PJ, Moestrup SK, de la Chapelle A, Krahe R (1999) Mutations in CUBN, encoding the intrinsic factor-vitamin B12 receptor, cubilin, cause hereditary megaloblastic anaemia 1. Nat Genet 21:309–313

    Article  CAS  PubMed  Google Scholar 

  67. Wahlstedt-Froberg V, Pettersson T, Aminoff M, Dugue B, Grasbeck R (2003) Proteinuria in cubilin-deficient patients with selective vitamin B12 malabsorption. Pediatr Nephrol 18:417–421

    PubMed  Google Scholar 

  68. Fyfe JC, Giger U, Hall CA, Jezyk PF, Klumpp SA, Levine JS, Patterson DF (1991) Inherited selective intestinal cobalamin malabsorption and cobalamin deficiency in dogs. Pediatr Res 29:24–31

    Article  CAS  PubMed  Google Scholar 

  69. Birn H, Fyfe JC, Jacobsen C, Mounier F, Verroust PJ, Orskov H, Willnow TE, Moestrup SK, Christensen EI (2000) Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. J Clin Invest 105:1353–1361

    Article  CAS  PubMed  Google Scholar 

  70. He Q, Madsen M, Kilkenney A, Gregory B, Christensen EI, Vorum H, Hojrup P, Schaffer AA, Kirkness EF, Tanner SM, de la Chapelle A, Giger U, Moestrup SK, Fyfe JC (2005) Amnionless function is required for cubilin brush-border expression and intrinsic factor-cobalamin (vitamin B12) absorption in vivo. Blood 106:1447–1453

    Article  CAS  PubMed  Google Scholar 

  71. Strope S, Rivi R, Metzger T, Manova K, Lacy E (2004) Mouse amnionless, which is required for primitive streak assembly, mediates cell-surface localization and endocytic function of cubilin on visceral endoderm and kidney proximal tubules. Development 131:4787–4795

    Article  CAS  PubMed  Google Scholar 

  72. Lloyd SE, Pearce SH, Fisher SE, Steinmeyer K, Schwappach B, Scheinman SJ, Harding B, Bolino A, Devoto M, Goodyer P, Rigden SP, Wrong O, Jentsch TJ, Craig IW, Thakker RV (1996) A common molecular basis for three inherited kidney stone diseases. Nature 379:445–449

    Article  CAS  PubMed  Google Scholar 

  73. Fisher SE, Black GC, Lloyd SE, Hatchwell E, Wrong O, Thakker RV, Craig IW (1994) Isolation and partial characterization of a chloride channel gene which is expressed in kidney and is a candidate for Dent’s disease (an X-linked hereditary nephrolithiasis). Hum Mol Genet 3:2053–2059

    CAS  PubMed  Google Scholar 

  74. Devuyst O, Christie PT, Courtoy PJ, Beauwens R, Thakker RV (1999) Intra-renal and subcellular distribution of the human chloride channel, CLC-5, reveals a pathophysiological basis for Dent’s disease. Hum Mol Genet 8:247–257

    Article  CAS  PubMed  Google Scholar 

  75. Gunther W, Luchow A, Cluzeaud F, Vandewalle A, Jentsch TJ (1998) ClC-5, the chloride channel mutated in Dent’s disease, colocalizes with the proton pump in endocytotically active kidney cells. Proc Natl Acad Sci USA 95:8075–8080

    Article  CAS  PubMed  Google Scholar 

  76. Sakamoto H, Sado Y, Naito I, Kwon TH, Inoue S, Endo K, Kawasaki M, Uchida S, Nielsen S, Sasaki S, Marumo F (1999) Cellular and subcellular immunolocalization of ClC-5 channel in mouse kidney: colocalization with H+-ATPase. Am J Physiol 277:F957–F965

    CAS  PubMed  Google Scholar 

  77. Wrong OM, Norden AG, Feest TG (1994) Dent’s disease; a familial proximal renal tubular syndrome with low-molecular-weight proteinuria, hypercalciuria, nephrocalcinosis, metabolic bone disease, progressive renal failure and a marked male predominance. QJM 87:473–493

    CAS  PubMed  Google Scholar 

  78. Piwon N, Gunther W, Schwake M, Bosl MR, Jentsch TJ (2000) CIC-5 Cl-channel disruption impairs endocytosis in a mouse model for Dent’s disease. Nature 408:369–373

    Article  CAS  PubMed  Google Scholar 

  79. Christensen EI, Devuyst O, Dom G, Nielsen R, Van der Smissen P, Verroust P, Leruth M, Guggino WB, Courtoy PJ (2003) Loss of chloride channel ClC-5 impairs endocytosis by defective trafficking of megalin and cubilin in kidney proximal tubules. Proc Natl Acad Sci USA 100:8472–8477

    Article  CAS  PubMed  Google Scholar 

  80. Santo Y, Hirai H, Shima M, Yamagata M, Michigami T, Nakajima S, Ozono K (2004) Examination of megalin in renal tubular epithelium from patients with Dent disease. Pediatr Nephrol 19:612–615

    Article  PubMed  Google Scholar 

  81. Leheste JR, Rolinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, Aucouturier P, Moskaug JO, Otto A, Christensen EI, Willnow TE (1999) Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 155:1361–1370

    CAS  PubMed  Google Scholar 

  82. Pober BR, Longoni M, Noonan KM (2009) A review of Donnai-Barrow and facio-oculo-acoustico-renal (DB/FOAR) syndrome: clinical features and differential diagnosis. Birth Defects Res A Clin Mol Teratol 85:76–81

    Article  CAS  PubMed  Google Scholar 

  83. Kantarci S, Al-Gazali L, Hill RS, Donnai D, Black GC, Bieth E, Chassaing N, Lacombe D, Devriendt K, Teebi A, Loscertales M, Robson C, Liu T, MacLaughlin DT, Noonan KM, Russell MK, Walsh CA, Donahoe PK, Pober BR (2007) Mutations in LRP2, which encodes the multiligand receptor megalin, cause Donnai-Barrow and facio-oculo-acoustico-renal syndromes. Nat Genet 39:957–959

    Article  CAS  PubMed  Google Scholar 

  84. Kantarci S, Ragge NK, Thomas NS, Robinson DO, Noonan KM, Russell MK, Donnai D, Raymond FL, Walsh CA, Donahoe PK, Pober BR (2008) Donnai-Barrow syndrome (DBS/FOAR) in a child with a homozygous LRP2 mutation due to complete chromosome 2 paternal isodisomy. Am J Med Genet A 146A:1842–1847

    Article  CAS  PubMed  Google Scholar 

  85. Willnow TE, Hilpert J, Armstrong SA, Rohlmann A, Hammer RE, Burns DK, Herz J (1996) Defective forebrain development in mice lacking gp330/megalin. Proc Natl Acad Sci USA 93:8460–8464

    Article  CAS  PubMed  Google Scholar 

  86. Gahl WA, Bashan N, Tietze F, Bernardini I, Schulman JD (1982) Cystine transport is defective in isolated leukocyte lysosomes from patients with cystinosis. Science 217:1263–1265

    Article  CAS  PubMed  Google Scholar 

  87. Jonas AJ, Smith ML, Schneider JA (1982) ATP-dependent lysosomal cystine efflux is defective in cystinosis. J Biol Chem 257:13185–13188

    CAS  PubMed  Google Scholar 

  88. Kalatzis V, Cherqui S, Antignac C, Gasnier B (2001) Cystinosin, the protein defective in cystinosis, is a H(+)-driven lysosomal cystine transporter. EMBO J 20:5940–5949

    Article  CAS  PubMed  Google Scholar 

  89. Town M, Jean G, Cherqui S, Attard M, Forestier L, Whitmore SA, Callen DF, Gribouval O, Broyer M, Bates GP, van’t Hoff W, Antignac C (1998) A novel gene encoding an integral membrane protein is mutated in nephropathic cystinosis. Nat Genet 18:319–324

    Article  CAS  PubMed  Google Scholar 

  90. Nesterova G, Gahl W (2008) Nephropathic cystinosis: late complications of a multisystemic disease. Pediatr Nephrol 23:863–878

    Article  PubMed  Google Scholar 

  91. Gahl WA, Thoene JG, Schneider JA (2002) Cystinosis. N Engl J Med 347:111–121

    Article  PubMed  Google Scholar 

  92. Manz F, Gretz N (1994) Progression of chronic renal failure in a historical group of patients with nephropathic cystinosis. European Collaborative Study on Cystinosis. Pediatr Nephrol 8:466–471

    Article  CAS  PubMed  Google Scholar 

  93. Mahoney CP, Striker GE (2000) Early development of the renal lesions in infantile cystinosis. Pediatr Nephrol 15:50–56

    Article  CAS  PubMed  Google Scholar 

  94. Wilmer MJ, Willems PH, Verkaart S, Visch HJ, de Graaf-Hess A, Blom HJ, Monnens LA, van den Heuvel LP, Levtchenko EN (2007) Cystine dimethylester model of cystinosis: still reliable? Pediatr Res 62:151–155

    Article  CAS  PubMed  Google Scholar 

  95. Wilmer MJ, van den Heuvel LP, Levtchenko EN (2008) The use of CDME in cystinosis research. Neurochem Res 33:2373–2374

    Article  CAS  PubMed  Google Scholar 

  96. Wilmer MJ, Christensen EI, van den Heuvel LP, Monnens LA, Levtchenko EN (2008) Urinary protein excretion pattern and renal expression of megalin and cubilin in nephropathic cystinosis. Am J Kidney Dis 51:893–903

    Article  CAS  PubMed  Google Scholar 

  97. Ruivo R, Anne C, Sagne C, Gasnier B (2009) Molecular and cellular basis of lysosomal transmembrane protein dysfunction. Biochim Biophys Acta 1793:636–649

    Article  CAS  PubMed  Google Scholar 

  98. Thoene JG (2007) A review of the role of enhanced apoptosis in the pathophysiology of cystinosis. Mol Genet Metab 92:292–298

    Article  CAS  PubMed  Google Scholar 

  99. Kleta R, Bernardini I, Ueda M, Varade WS, Phornphutkul C, Krasnewich D, Gahl WA (2004) Long-term follow-up of well-treated nephropathic cystinosis patients. J Pediatr 145:555–560

    Article  PubMed  Google Scholar 

  100. Lowe CU, Terry M, MacLachlan EA (1952) Organic-aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation; a clinical entity. AMA Am J Dis Child 83:164–184

    CAS  PubMed  Google Scholar 

  101. Lowe M (2005) Structure and function of the Lowe syndrome protein OCRL1. Traffic 6:711–719

    Article  CAS  PubMed  Google Scholar 

  102. Attree O, Olivos IM, Okabe I, Bailey LC, Nelson DL, Lewis RA, McInnes RR, Nussbaum RL (1992) The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358:239–242

    Article  CAS  PubMed  Google Scholar 

  103. Schmid AC, Wise HM, Mitchell CA, Nussbaum R, Woscholski R (2004) Type II phosphoinositide 5-phosphatases have unique sensitivities towards fatty acid composition and head group phosphorylation. FEBS Lett 576:9–13

    Article  CAS  PubMed  Google Scholar 

  104. Zhang X, Hartz PA, Philip E, Racusen LC, Majerus PW (1998) Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4, 5-bisphosphate. J Biol Chem 273:1574–1582

    Article  CAS  PubMed  Google Scholar 

  105. Ungewickell A, Ward ME, Ungewickell E, Majerus PW (2004) The inositol polyphosphate 5-phosphatase Ocrl associates with endosomes that are partially coated with clathrin. Proc Natl Acad Sci USA 101:13501–13506

    Article  CAS  PubMed  Google Scholar 

  106. Erdmann KS, Mao Y, McCrea HJ, Zoncu R, Lee S, Paradise S, Modregger J, Biemesderfer D, Toomre D, De CP (2007) A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev Cell 13:377–390

    Article  CAS  PubMed  Google Scholar 

  107. Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C, Greene LE, Lowe M (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479

    Article  CAS  PubMed  Google Scholar 

  108. Ooms LM, Horan KA, Rahman P, Seaton G, Gurung R, Kethesparan DS, Mitchell CA (2009) The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 419:29–49

    Article  CAS  PubMed  Google Scholar 

  109. Varsano T, Dong MQ, Niesman I, Gacula H, Lou X, Ma T, Testa JR, Yates JR III, Farquhar MG (2006) GIPC is recruited by APPL to peripheral TrkA endosomes and regulates TrkA trafficking and signaling. Mol Cell Biol 26:8942–8952

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the University of Aarhus, Novo Nordisk Foundation, The Danish Medical Research Council, and programs of the European Community; EuReGene (FP6, GA#5085) and EUNEPHRON (FP7, GA#201590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Ilsø Christensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nielsen, R., Christensen, E.I. Proteinuria and events beyond the slit. Pediatr Nephrol 25, 813–822 (2010). https://doi.org/10.1007/s00467-009-1381-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-009-1381-9

Keywords

Navigation