Skip to main content
Log in

Neutrophil activation, protein oxidation and ceruloplasmin levels in children with Henoch-Schönlein purpura

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the role of neutrophil activation, protein oxidation and ceruloplasmin (CLP) in the pathogenesis of Henoch-Schönlein purpura (HSP), which has not been investigated previously. Serum activities of myeloperoxidase (MPO) and arylesterase (ARYL) and levels of free thiol groups, CLP and total oxidant status (TOS) were measured in 29 children with HSP at the onset of the disease and during remission in comparison with 30 healthy subjects. Patients at active stage had significantly higher MPO activity (391 ± 277 vs. 155 ± 154 U/l, P < 0.001), higher CLP (832 ± 120 vs. 682 ± 114 mg/dl, P < 0.001) and TOS values (20.7 ± 11.8 vs. 7.5 ± 2.8 μmol H2O2/l, P < 0.001) than the controls, respectively. Patients had significantly lower ARYL activity (158 × 103 ± 39 × 103 vs. 187 × 103 ± 46 × 103 U/l, P < 0.001) and lower free thiol levels (234 ± 48 vs. 279 ± 26 μmol/l, P < 0.001) than the controls, respectively. Significantly positive correlations were found between TOS and MPO (r = 0.437, P = 0.018) and TOS and CLP (r = 0.409, P = 0.028) at disease onset, whereas a negative correlation was found between MPO and thiol (r = −0.597, P = 0.001) during remission. In conclusion, protein oxidation and neutrophil activation may play important roles in the pathogenesis of HSP. Further research is required to understand the potential linkage between oxidant stress and complications and to develop therapeutic strategies in HSP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Tizard EJ (1996) Henoch-Schönlein purpura. Arch Dis Child 80:380–383

    Article  Google Scholar 

  2. Rostoker G, Rymer JC, Bagnard G, Petit-Phar M, Griuncelli M, Pilatte Y (1998) Imbalances in serum proinflammatory cytokines and their soluble receptors: a putative role in the progression of idiopathic IgA nephropathy (IgAN) and Henoch-Schonlein purpura nephritis, and a potential target of immunoglobulin therapy? Clin Exp Immunol 114:468–476

    Article  CAS  Google Scholar 

  3. Andreoli SP (1991) Reactive oxygen molecules, oxidant injury and renal disease. Pediatr Nephrol 5:733–742

    Article  CAS  Google Scholar 

  4. Ece A, Atamer Y, Gurkan F, Davutoglu M, Bilici M, Tutanc M, Gunes A (2005) Paraoxonase, anti-oxidant response and oxidative stress in children with chronic renal failure. Pediatr Nephrol 21:239–245

    Article  Google Scholar 

  5. Ece A, Gürkan F, Kervancioglu M, Kocamaz H, Güneş A, Atamer Y, Selek Ş (2006) Oxidative stress, inflammation and early cardiovascular damage in children with chronic renal failure. Pediatr Nephrol 21:545–552

    Article  Google Scholar 

  6. Shah SV (1988) Evidence suggesting a role for hydroxyl radical in passive Heymann nephritis in rats. Am J Physiol 254:F337–F344

    CAS  PubMed  Google Scholar 

  7. Rahman MA, Emancipator SS, Sedor JR (1988) Hydroxyl radical scavengers ameliorate proteinuria in rat immune complex glomerulonephritis. J Lab Clin Med 112:619–626

    CAS  PubMed  Google Scholar 

  8. Turi S, Nemeth I, Torkos A, Saghy L, Varga I, Matkovics B, Nagy J (1997) Oxidative stress and antioxidant defense mechanism in glomerular diseases. Free Radical Biol Med 22:161–168

    Article  CAS  Google Scholar 

  9. Buyan N, Erbas D, Akkok N, Oz E, Biberoglu G, Hasanoglu E (1998) Role of free oxygen radicals and prostanoids in the pathogenesis of Henoch-Schönlein Purpura. Prostaglandins Leukot Essent Fatty Acids 59:181–184

    Article  CAS  Google Scholar 

  10. Demircin G, Öner A, Ünver Y, Bülbül M, Erdoğan Ö (1998) Erythrocyte superoxide dismutase activity and plasma malondialdehyde levels in children with Henoch-Schönlein purpura. Acta Paediatr 87:848–852

    Article  CAS  Google Scholar 

  11. Erdoğan Ö, Öner A, Aydın A, Işımer A, Demircin G, Bülbül M (2003) Effect of vitamin E treatment on the oxidative damage occurring in Henoch-Schönlein purpura. Acta Paediatr 92:546–550

    Article  Google Scholar 

  12. Hazen SL, Hsu FF, Mueller DM, Crowley JR, Heinecke JW (1996) Human neutrophils employ chlorine gas as an oxidant during phagocytosis. J Clin Invest 98:1283–1289

    Article  CAS  Google Scholar 

  13. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38

    Article  CAS  Google Scholar 

  14. Himmelfarb J, McMonagle E, McMenamin E (2000) Plasma protein thiol oxidation and carbonyl formation in chronic renal failure. Kidney Int 58:2571–2578

    Article  CAS  Google Scholar 

  15. Mackness M, Durrington P, Mackness B (2004) Paraoxonase 1 activity, concentration and genotype in cardiovascular disease. Curr Opin Lipidol 15:399–404

    Article  CAS  Google Scholar 

  16. Baskın E, Bakkaloğlu A, Beşbaş N, Hasçelik G, Saatçi Ü, Özen S (2002) Ceruloplasmin levels in antineutrophil cytoplasmic antibody-positive patients. Pediatr Nephrol 17:917–919

    Article  Google Scholar 

  17. Giurgea N, Constantinescu MI, Stancui R, Suciu S, Muresan A (2005) Ceruloplasmin- acute-phase reactant or endogenous antioxidant? The case of cardiovascular disease. Med Sci Monit 11:RA48–RA51

    CAS  PubMed  Google Scholar 

  18. Mills JA, Michel BA, Bloch DA, Calabrese LH, Hunder GG, Arend WP, Edworthy SM, Fauci AS, Leavitt RY, Lie JT (1990) The American College of Rheumatology, 1990 criteria for the classification of Henoch-Schönlein purpura. Arthritis Rheum 33:1114–1121

    Article  CAS  Google Scholar 

  19. Erel O (1998) Automated measurement of serum ferroxidase activity. Clin Chem 4:313–319

    Google Scholar 

  20. Bradley PP, Priebat DA, Christensen RD, Rothstein G (1982) Measurement of cutaneous inflammation: estimation of neutrophil content with an enzyme marker. J Invest Dermatol 78:206–209

    Article  CAS  Google Scholar 

  21. Haagen L, Brock A (1992) A new automated method for phenotyping arylesterase (E.C.3·1·1·2) based upon inhibition of enzymatic hydrolysis of 4-nitrophenyl acetate by phenyl acetate. Eur J Clin Chem Clim Biochem 30:391–395

    CAS  Google Scholar 

  22. Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  23. Hu ML, Louie S, Cross CE, Motchnik P, Halliwell B (1993) Antioxidant protection against hypochlorous acid in human plasma. J Lab Clin Med 121:257–262

    CAS  PubMed  Google Scholar 

  24. Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  CAS  Google Scholar 

  25. Srivastava CH, Rado TA, Bauerle D, Broxmeyer HE (1991) Regulation of human bone marrow lactoferrin and myeloperoxidase gene expression by tumor necrosis factor-alpha. J Immunol 46:1014–1019

    Google Scholar 

  26. Kaysen GA, Dubin JA, Müller HG, Mitch WE, Levin NW; The HEMO Group (2001) Levels of 1 acid glycoprotein and ceruloplasmin predict future albumin levels in hemodialysis patients. Kidney Int 60:2360–2366

    Article  CAS  Google Scholar 

  27. Yazıcı C, Köse K, Çalış M, Demir M, Kırnap M, Ateş F (2004) Increased advanced oxidation protein products in Behçet’s disease: a new activity marker? Br J Dermatol 151:105–111

    Article  Google Scholar 

  28. Pullar JM, Vissers MC, Winterbourn CC (2000) Living with a killer: the effects of hypochlorous acid on mammalian cells. IUBMB Life 50:259–266

    Article  CAS  Google Scholar 

  29. Griffin SV, Chapman PT, Lianos EA, Lockwood CM (1999) The inhibition of myeloperoxidase by ceruloplasmin can be reversed by anti-myeloperoxidase antibodies. Kidney Int 55:917–925

    Article  CAS  Google Scholar 

  30. Kang JH, Kim SK, Choi SY, Kwon HY, Won MH (2001) Oxidative modification of human ceruloplasmin by peroxyl radicals. Biochem Biophys Acta 1568:30–36

    Article  CAS  Google Scholar 

  31. Morgan PE, Sturgess AD, Davies MJ (2005) Increased levels of serum protein oxidation and correlation with disease activity in systemic lupus erythematosus. Arthritis Rheum 52:2069–2079

    Article  CAS  Google Scholar 

  32. Öner A, Tınaztepe K, Erdoğan Ö (1995) The effect of triple therapy on rapidly progressive type of Henoch-Schönlein nephritis. Pediatr Nephrol 9:6–10

    Article  Google Scholar 

  33. Orzechowski A, Ostaszewski P, Wilczak J, Jank M, Balasinska B, Wareski P, Fuller J Jr (2002) Rats with a glucocorticoid induced catabolic state show symptoms of oxidative stress and spleen atrophy: the effects of age and recovery. J Vet Med A Physiol Pathol Clin Med 49:256–263

    Article  CAS  Google Scholar 

  34. Iuchi T, Akaike M, Mitsui T, Ohshima Y, Shintani Y, Azuma H, Matsumoto T (2003) Glucorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circ Res 92:81–87

    Article  CAS  Google Scholar 

  35. Ece A, Atamer Y, Gürkan F, Davutoğlu M, Koçyiğit Y, Tutanç M (2005) Paraoxonase, total antioxidant response, and peroxide levels in children with steroid-sensitive nephrotic syndrome. Pediatr Nephrol 20:1279–1284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydın Ece.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ece, A., Kelekçi, S., Hekimoğlu, A. et al. Neutrophil activation, protein oxidation and ceruloplasmin levels in children with Henoch-Schönlein purpura. Pediatr Nephrol 22, 1151–1157 (2007). https://doi.org/10.1007/s00467-007-0475-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-007-0475-5

Keywords

Navigation