Skip to main content

Advertisement

Log in

Dynamic analysis of flexoelectric systems in the frequency domain with isogeometric analysis

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A numerical procedure based on isogeometric analysis (IGA) is developed to analyze the dynamic response of flexoelectric systems in the frequency domain. In materials or composites with an effective flexoelectric response, a polarization can be induced by local strain gradients. In general, these effects are small in the static regime. However, larger effects may be induced by dynamic loads, and can be used in energy harvesters converting mechanical vibrations into electrical energy. In this work, the equations describing frequency response of flexoelectric systems under dynamic loads are first described. Then, an IGA discretization procedure is employed to handle the \(C^1\) continuity of the displacement fields. The conditions of both open and close-circuits are formulated. The numerical methodology is used to evaluate the sensitivity of different parameters such as load resistors, dynamic scale parameter, and the use of flexoelectric or non-flexoelectric materials on the frequency response of output voltage, power and displacements of beam-like structures, possibly incorporating structural geometrical features. The potential of IGA with respect to mesh refinement (h-refinement) and higher order approximation (p-refinement) for modeling complex geometries within the present framework is invetigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Han JK, Jeon DH, Cho SY, Kang SW, Yang SA, Bu SD, Myung S, Lim J, Choi M, Lee M et al (2016) Nanogenerators consisting of direct-grown piezoelectrics on multi-walled carbon nanotubes using flexoelectric effects. Sci Rep 6(1):1–8

    Google Scholar 

  2. Deng Q, Kammoun M, Erturk A, Sharma P (2014) Nanoscale flexoelectric energy harvesting. Int J Solids Struct 51(18):3218–3225

    Article  Google Scholar 

  3. Liang X, Hu S, Shen S (2017) Nanoscale mechanical energy harvesting using piezoelectricity and flexoelectricity. Smart Mater Struct 26(3):035050

    Article  Google Scholar 

  4. Rey AD, Servio P, Herrera-Valencia EE (2014) Stress-sensor device based on flexoelectric liquid crystalline membranes. ChemPhysChem 15(7):1405–1412

    Article  Google Scholar 

  5. Herrera-Valencia EE, Rey AD (2014) Actuation of flexoelectric membranes in viscoelastic fluids with applications to outer hair cells. Philos Trans R Soc A Math Phys Eng Sci 372(2029):20130369

    Article  Google Scholar 

  6. Mashkevich VS, Tolpygo KB (1957) Electrical, optical and elastic properties of diamond type crystals. Soviet Phys JETP 5(3)

  7. Harris P (1965) Mechanism for the shock polarization of dielectrics. J Appl Phys 36(3):739–741

    Article  Google Scholar 

  8. Ma W, Cross LE (2001) Large flexoelectric polarization in ceramic lead magnesium niobate. Appl Phys Lett 79(26):4420–4422

    Article  Google Scholar 

  9. Ma W, Cross LE (2002) Flexoelectric polarization of barium strontium titanate in the paraelectric state. Appl Phys Lett 81(18):3440–3442

    Article  Google Scholar 

  10. Kogan SM (1964) Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Soviet Phys-Solid State 5:197–224

    Google Scholar 

  11. Maranganti R, Sharma ND, Sharma P (2006) Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green’s function solutions and embedded inclusions. Phys Rev B 74(1):014110

    Article  Google Scholar 

  12. Sharma NN, Maranganti R, Sharma P (2007) On the possibility of piezoelectric nanocomposites without using piezoelectric materials. J Mech Phys Solids 55(11):2328–2350

    Article  MATH  Google Scholar 

  13. Zhu W, Fu JY, Li N, Cross LE (2006) Piezoelectric composite based on the enhanced flexoelectric effects. Appl Phys Lett 89(19):192904

    Article  Google Scholar 

  14. Shen S, Hu S (2010) A theory of flexoelectricity with surface effect for elastic dielectrics. J Mech Phys Solids 58(5):665–677

    Article  MATH  Google Scholar 

  15. Deng Q, Shen S (2018) The flexodynamic effect on nanoscale flexoelectric energy harvesting: a computational approach. Smart Mater Struct 27(10):105001

    Article  Google Scholar 

  16. Baroudi S, Najar F, Jemai A (2018) Static and dynamic analytical coupled field analysis of piezoelectric flexoelectric nanobeams: a strain gradient theory approach. Int J Solids Struct 135:110–124

    Article  Google Scholar 

  17. Wang KF, Wang BL (2016) An analytical model for nanoscale unimorph piezoelectric energy harvesters with flexoelectric effect. Compos Struct 153:253–261

    Article  Google Scholar 

  18. Hu SD, Li H, Tzou H (2012) Sensing signal and energy generation analysis on a flexoelectric beam. In: ASME international mechanical engineering congress and exposition, vol 45226. American Society of Mechanical Engineers, pp 523–531

  19. Fan M, Deng B, Tzou H (2018) Dynamic flexoelectric actuation and vibration control of beams. J Vib Acoust 140(4)

  20. Zhang X, Li H, Tzou H (2016) Analytical and experimental studies of flexoelectric beam control. In: ASME international mechanical engineering congress and exposition, vol 50558. American Society of Mechanical Engineers, p V04BT05A054

  21. Yan Z (2017) Modeling of a nanoscale flexoelectric energy harvester with surface effects. Physica E 88:125–132

    Article  Google Scholar 

  22. Yan Z, Jiang L (2013) Size-dependent bending and vibration behaviour of piezoelectric nanobeams due to flexoelectricity. J Phys D Appl Phys 46(35):355502

    Article  Google Scholar 

  23. Zhang DP, Lei YJ, Adhikari S (2018) Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory. Acta Mech 229(6):2379–2392

    Article  MATH  Google Scholar 

  24. Nguyen BH, Nanthakumar SS, Zhuang X, Wriggers P, Jiang X, Rabczuk T (2018) Dynamic flexoelectric effect on piezoelectric nanostructures. Eur J Mech A Solids 71:404–409

    Article  MATH  Google Scholar 

  25. Yu P, Leng W, Peng L, Suo Y, Guo J (2021) The bending and vibration responses of functionally graded piezoelectric nanobeams with dynamic flexoelectric effect. Results Phys 28:104624

    Article  Google Scholar 

  26. Zhang Z, Yan Z, Jiang L (2014) Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate. J Appl Phys 116(1):014307

    Article  Google Scholar 

  27. Shingare KB, Kundalwal SI (2019) Static and dynamic response of graphene nanocomposite plates with flexoelectric effect. Mech Mater 134:69–84

    Article  Google Scholar 

  28. Wang KF, Wang BL (2017) Non-linear flexoelectricity in energy harvesting. Int J Eng Sci 116:88–103

    Article  Google Scholar 

  29. Baroudi S, Najar F (2019) Dynamic analysis of a nonlinear nanobeam with flexoelectric actuation. J Appl Phys 125(4):044503

    Article  Google Scholar 

  30. Zarepour M, Hosseini SAH, Akbarzadeh AH (2019) Geometrically nonlinear analysis of timoshenko piezoelectric nanobeams with flexoelectricity effect based on eringen’s differential model. Appl Math Model 69:563–582

    Article  MATH  Google Scholar 

  31. Ajri M, Rastgoo A, Fakhrabadi MMS (2019) How does flexoelectricity affect static bending and nonlinear dynamic response of nanoscale lipid bilayers? Phys Scr 95(2):025001

    Article  Google Scholar 

  32. Chen L, Pan S, Fei Y, Zhang W, Yang F (2019) Theoretical study of micro/nano-scale bistable plate for flexoelectric energy harvesting. Appl Phys A 125(4):1–11

    Article  Google Scholar 

  33. Abdollahi A, Peco C, Millán D, Arroyo M, Arias I (2014) Computational evaluation of the flexoelectric effect in dielectric solids. J Appl Phys 116(9):093502

    Article  Google Scholar 

  34. Abdollahi A, Millán D, Peco C, Arroyo M, Arias I (2015) Revisiting pyramid compression to quantify flexoelectricity: a three-dimensional simulation study. Phys Rev B 91:104103

    Article  Google Scholar 

  35. Mao S, Purohit PK, Aravas N (2016) Mixed finite-element formulations in piezoelectricity and flexoelectricity. Proc R Soc A Math Phys Eng Sci 472(2190):20150879

    MATH  Google Scholar 

  36. Deng F, Deng Q, Yu W, Shen S (2017) Mixed finite elements for flexoelectric solids. J Appl Mech 84(8)

  37. Ghasemi H, Park HS, Rabczukk T (2017) A level-set based IGA formulation for topology optimization of flexoelectric materials. Comput Methods Appl Mech Eng 313:239–258

    Article  MATH  Google Scholar 

  38. Thai TQ, Rabczuk T, Zhuang X (2018) A large deformation isogeometric approach for flexoelectricity and soft materials. Comput Methods Appl Mech Eng 341:718–739

    Article  MATH  Google Scholar 

  39. Nguyen BH, Zhuang X, Rabczuk T (2018) Numerical model for the characterization of Maxwell-Wagner relaxation in piezoelectric and flexoelectric composite material. Comput Struct 208:75–91

    Article  Google Scholar 

  40. Codony D, Marco O, Fernández-Méndez S, Arias I (2019) An immersed boundary hierarchical b-spline method for flexoelectricity. Comput Methods Appl Mech Eng 354:750–782

    Article  MATH  Google Scholar 

  41. Yvonnet J, Liu LP (2017) A numerical framework for modeling flexoelectricity and maxwell stress in soft dielectrics at finite strains. Comput Methods Appl Mech Eng 313:450–482

    Article  MATH  Google Scholar 

  42. Kumar A, Sharma A, Kumar R, Vaish R, Chauhan VS (2014) Finite element analysis of vibration energy harvesting using lead-free piezoelectric materials: a comparative study. J Asian Ceramic Soc 2(2):138–143

    Google Scholar 

  43. Kumar A, Sharma A, Vaish R, Kumar R, Jain SC (2018) A numerical study on flexoelectric bistable energy harvester. Appl Phys A 124(7):1–9

    Article  Google Scholar 

  44. Thai TQ, Zhuang X, Park HS, Rabczuk T (2021) A staggered explicit-implicit isogeometric formulation for large deformation flexoelectricity. Eng Anal Boundary Elem 122:1–12

    Article  MATH  Google Scholar 

  45. Xue J, Chen L, Chang L, Zhang W (2021) A wideband flexoelectric energy harvester based on graphene substrate. Eng Struct 231:111779

    Article  Google Scholar 

  46. Papargyri-Beskou S, Polyzos D, Beskos DE (2009) Wave dispersion in gradient elastic solids and structures: a unified treatment. Int J Solids Struct 46(21):3751–3759

    Article  MATH  Google Scholar 

  47. Gourgiotis PA, Georgiadis HG, Neocleous I (2013) On the reflection of waves in half-spaces of microstructured materials governed by dipolar gradient elasticity. Wave Motion 50(3):437–455

    Article  MATH  Google Scholar 

  48. Li Y, Wei P (2016) Reflection and transmission through a microstructured slab sandwiched by two half-spaces. Eur J Mech A Solids 57:1–17

    Article  MATH  Google Scholar 

  49. Sladek J, Sladek V, Mv Repka, Deng Q (2021) Flexoelectric effect in dielectrics under a dynamic load. Compos Struct 260:113528

    Article  Google Scholar 

  50. Askes H, Aifantis EC (2011) Gradient elasticity in statics and dynamics: an overview of formulations, length scale identification procedures, finite element implementations and new results. Int J Solids Struct 48(13):1962–1990

    Article  Google Scholar 

  51. Fu JY, Zhu W, Li N, Cross LE (2006) Experimental studies of the converse flexoelectric effect induced by inhomogeneous electric field in a barium strontium titanate composition. J Appl Phys 100(2):024112

    Article  Google Scholar 

  52. Chen X, Yvonnet J, Park HS, Yao S (2021) Enhanced converse flexoelectricity in piezoelectric composites by coupling topology optimization with homogenization. J Appl Phys 129(24):245104

    Article  Google Scholar 

  53. Maranganti R, Sharma P (2007) A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J Mech Phys Solids 55(9):1823–1852

    Article  MATH  Google Scholar 

  54. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput Methods Appl Mech Eng 194(39):4135–4195

    Article  MATH  Google Scholar 

  55. Nguyen VP, Bordas S (2015) Extended isogeometric analysis for strong and weak discontinuities. Springer Vienna, pp 21–120

  56. Carl DB (1978) A practical guide to splines, vol 27. springer, New York

  57. Yvonnet J, Chen X, Sharma P (2020) Apparent flexoelectricity due to heterogeneous piezoelectricity. J Appl Mech 87(11):111003

    Article  Google Scholar 

  58. Nanthakumar SS, Zhuang X, Park HS, Rabczuk T (2017) Topology optimization of flexoelectric structures. J Mech Phys Solids 105:217–234

  59. Majdoub MS, Sharma P, Çağin T (2009) Erratum: Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys Rev B 79:119904

    Article  Google Scholar 

  60. Fan M, Tzou H (2019) Vibration control with the converse flexoelectric effect on the laminated beams. J Intell Mater Syst Struct 30(17):2556–2566

    Article  Google Scholar 

  61. Chen X, Yvonnet J, Yao S, Park HS (2021) Topology optimization of flexoelectric composites using computational homogenization. Comput Methods Appl Mech Eng 381:113819

    Article  MATH  Google Scholar 

  62. Gitman IM, Askes H, Kuhl E, Aifantis EC (2010) Stress concentrations in fractured compact bone simulated with a special class of anisotropic gradient elasticity. Int J Solids Struct 47(9):1099–1107

    Article  MATH  Google Scholar 

  63. Wang L, Hu H (2005) Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B 71:195412

    Article  Google Scholar 

  64. Felippa CA (2004) Introduction to finite element methods. University of Colorado, 885

  65. Chan CL, Anitescu C, Rabczuk T (2018) Isogeometric analysis with strong multipatch c1-coupling. Comput Aided Geom Des 62:294–310

    Article  MATH  Google Scholar 

Download references

Acknowledgements

Xing Chen acknowledges the support from China Scholarship Council (CSC No. 202106370116)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Yvonnet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Numerical values of material matrices

Appendix: Numerical values of material matrices

$$\begin{aligned}&{\mathbf {C}}_1=\begin{bmatrix} 132.1&{} 84&{} 0\\ 84&{} 155.6&{} 0\\ 0&{} 0 &{} 35.8 \end{bmatrix}(GPa)&\end{aligned}$$
(76)
$$\begin{aligned}&\varvec{\mu }=\begin{bmatrix} 1.365&{}1.365&{}0&{}0&{}0&{}0\\ 0&{}0&{}0&{}2.641&{}2.641&{}0 \end{bmatrix} (\times 10^{-4}\,\text {C}\,\mathrm {m}^{-1})&\end{aligned}$$
(77)
$$\begin{aligned}&\varvec{e}=\begin{bmatrix} -0.5217&{} -0.5217&{} 0\\ 0&{} 0&{} 0 \end{bmatrix} (\text {C}\,\mathrm {m}^{-2})&\end{aligned}$$
(78)
$$\begin{aligned}&\varvec{\alpha }_1=\begin{bmatrix} 2.102&{} 0\\ 0&{} 4.065 \end{bmatrix}(\text {nC}^2\, \mathrm {N}^{-1}\,\text {m}^{-2})&\end{aligned}$$
(79)
$$\begin{aligned}&{\mathbf {g}}=\ell ^2\begin{bmatrix} 132.1&{}0&{}0&{}84&{}0&{}0\\ 0&{}132.1&{}84&{}0&{}0&{}0\\ 0&{}84&{}132.1&{}0&{}0&{}0\\ 84&{}0&{}0&{}132.1&{}0&{}0\\ 0&{}0&{}0&{}0&{}35.8&{}0\\ 0&{}0&{}0&{}0&{}0&{}35.8 \end{bmatrix}\times 10^9&\end{aligned}$$
(80)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Yao, S. & Yvonnet, J. Dynamic analysis of flexoelectric systems in the frequency domain with isogeometric analysis. Comput Mech 71, 353–366 (2023). https://doi.org/10.1007/s00466-022-02244-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-022-02244-0

Keywords

Navigation