Skip to main content
Log in

Robust dynamic analysis of detuned-mistuned rotating bladed disks with geometric nonlinearities

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This work is devoted to the robust analysis of the effects of geometric nonlinearities on the nonlinear dynamic behavior of rotating detuned (intentionally mistuned) bladed disks in presence of unintentional mistuning (simply called mistuning). Mistuning induces uncertainties in the computational model, which are taken into account by a probabilistic approach. This paper presents a series of novel results of the dynamic behavior of such rotating bladed disks exhibiting nonlinear geometric effects. The structural responses in the time domain are analyzed in the frequency domain. The frequency analysis exhibits responses outside the frequency band of excitation. The confidence region of the stochastic responses allows the robustness to be analyzed with respect to uncertainties and also allows physical insights to be given concerning the structural sensitivity. The bladed disk structure is made up of 24 blades for which several different detuned patterns are investigated with and without mistuning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Tobias S, Arnold R (1957) The influence of dynamical imperfection on the vibration of rotating disks. Proc Inst Mech Eng 171(1):669–690

    Article  Google Scholar 

  2. Ewins D (1969) The effects of detuning upon the forced vibrations of bladed disks. J Sound Vib 9(1):65–79

    Article  Google Scholar 

  3. Whitehead D (1998) The maximum factor by which forced vibration of blades can increase due to mistuning. ASME J Eng Gas Turbines Power 120(1):115–119

    Article  Google Scholar 

  4. Kruse M, Pierre C (1996) Forced response of mistuned bladed disks using reduced-order modeling. In: 37th Structure, structural dynamics and materials conference, p. 1545

  5. Yang M-T, Griffin J (1997) A reduced order approach for the vibration of mistuned bladed disk assemblies. ASME J Eng Gas Turbines Power 119(1):161–167

    Article  Google Scholar 

  6. Castanier M, Pierre C (1997) Consideration on the benefits of intentional blade mistuning for the forced response of turbomachinery rotors. Anal Des Issues Mod Aerosp Veh 1997:419–425

    Google Scholar 

  7. Bladh R, Castanier M, Pierre C (1999) Reduced order modeling and vibration analysis of mistuned bladed disk assemblies with shrouds. J Eng Gas Turbines Power 121(3):515–522

    Article  Google Scholar 

  8. Bladh R, Castanier M (2001) Component-mode-based reduced order modeling techniques for mistuned bladed disks-part 1: theoretical models. J Eng Gas Turbines Power 123(1):89–99

    Article  Google Scholar 

  9. Rivas-Guerras A, Mignolet M (2001) Local/global effects of mistuning on the forced response of bladed disks. In: ASME Turbo Expo 2001: Power for Land, Sea, and Air. American Society of Mechanical Engineers. pp V004T01A002–V004T01A002

  10. Castanier M, Pierre C (2002) Using intentional mistuning in the design of turbomachinery rotors. AIAA Journal 40(10):2077–2086

    Article  Google Scholar 

  11. Feiner D, Griffin J (2002) A fundamental model of mistuning for a single family of modes. ASME J Turbomach 124(4):597–605

    Article  Google Scholar 

  12. Kenyon J, Griffin J, Feiner D (2003) Maximum bladed disk forced response from distortion of a structural mode. J Turbomach 125(2):352–363

    Article  Google Scholar 

  13. Lim S-H, Bladh R, Castanier M, Pierre C (2007) Compact, generalized component mode mistuning representation for modeling bladed disk vibration. AIAA Journal 45(9):2285–2298

    Article  Google Scholar 

  14. Beirow B, Figaschewsky F, Kühhorn A, Bornhorn A (2019) Vibration analysis of an axial turbine blisk with optimized intentional mistuning pattern. J Sound Vib 442:11–27

    Article  Google Scholar 

  15. Castanier M, Pierre C (1998) Investigation of the combined effects of intentional and random mistuning on the forced response of bladed disks. In: 34th AIAA/ASME/SAE/ASEE Joint propulsion conference and exhibit, p 3720

  16. Mignolet M, Hu W, Jadic I (2000) On the forced response of harmonically and partially mistuned bladed disks. Part 2: partial mistuning and applications. Int J Rotating Mach 6(1):43–56

    Article  Google Scholar 

  17. Mignolet M, Rivas-Guerra A, Delor J (2001) Identification of mistuning characteristics of bladed disks from free response data—part 1. J Eng Gas Turbines Power 123(2):395–403

    Article  Google Scholar 

  18. Brown JM, Slater J, Grandhi R (2003) Probabilistic analysis of geometric uncertainty effects on blade modal response. In: ASME Turbo Expo 2003, collocated with the 2003 international joint power generation conference. American Society of Mechanical Engineers, pp 247–255

  19. Lee S-Y, Castanier M, Pierre C (2005) Assessment of probabilistic methods for mistuned bladed disk vibration. In: 46th AIAA/ASME/ASCE/AHS/ASC Structures, structural dynamics and materials conference, p 1990

  20. Capiez-Lernout E, Soize C (2004) Nonparametric modeling of random uncertainties for dynamic response of mistuned bladed-disks. J Eng Gas Turbines Power 126(3):610–618

    Article  Google Scholar 

  21. Capiez-Lernout E, Soize C, Lombard J-P, Dupont C, Seinturier E (2005) Blade manufacturing tolerances definition for a mistuned industrial bladed disk. ASME J Eng Gas Turbines Power 125(3):621–628

    Article  Google Scholar 

  22. Nyssen F, Arnst M, Golinval J-C (2014) Modeling of uncertainties in bladed disks using a nonparametric approach. In: ASME 2014 International design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers, pp V008T11A068–V008T11A068

  23. Choi B-K, Lentz J, Rivas-Guerra J, Mignolet MP (2002) Optimization of intentional mistuning patterns for the reduction of the forced response effects of unintentional mistuning: Formulation and assessment. J Eng Gas Turbines Power 125(1):131–140

    Article  Google Scholar 

  24. Han Y, Mignolet M (2008) Optimization of intentional mistuning patterns for the mitigation of the effects of random mistuning. In: ASME Turbo Expo 2008: Power for Land, Sea, and Air. American Society of Mechanical Engineers, pp 601–609

  25. Mbaye M, Soize C, Ousty J-P, Capiez-Lernout E (2013) Robust analysis of design in vibration of turbomachines. J Turbomach 135(2):021008

    Article  Google Scholar 

  26. Han Y, Murthy R, Mignolet M-P, Lentz J (2014) Optimization of intentional mistuning patterns for the mitigation of the effects of random mistuning. J Eng Gas Turbines Power 136(6):062505

    Article  Google Scholar 

  27. Vakakis A (1992) Dynamics of a nonlinear periodic structure with cyclic symmetry. Acta Mech 95(1–4):197–226

    Article  MathSciNet  MATH  Google Scholar 

  28. Grolet A, Thouverez F (2010) Vibration analysis of a nonlinear system with cyclic symmetry. In: ASME Turbo Expo 2010: Power for Land, Sea, and Air. American Society of Mechanical Engineers, pp 917–929

  29. Martin A, Thouverez F (2019) Dynamic analysis and reduction of a cyclic symmetric system subjected to geometric nonlinearities. J Eng Gas Turbines Power 141(4):041027

    Article  Google Scholar 

  30. Capiez-Lernout E, Soize C, Mbaye M (2015) Mistuning analysis and uncertainty quantification of an industrial bladed disk with geometrical nonlinearity. J Sound Vib 356:124–143

    Article  Google Scholar 

  31. Willeke S, Keller C, Panning-von Scheidt J, Seume JR, Wallaschek J (2017) Reduced-order modeling of mistuned bladed disks considering aerodynamic coupling and mode family interaction. In: 12th European conference on turbomachinery fluid dynamics and thermodynamics

  32. Keller C, Kellersmann A, Friedrichs J, Seume JR (2017) Influence of geometric imperfections on aerodynamic and aeroelastic behavior of a compressor blisk. In: Proceedings of the Asme turbo expo: turbine technical conference and exposition, 2017, Vol 7B, 2017, ASME turbo expo: turbine technical conference and exposition, Charlotte, NC, Jun 26-30

  33. Martel C, Sanchez-Alvarez JJ (2018) Intentional mistuning effect in the forced response of rotors with aerodynamic damping. J Sound Vib 433:212–229

    Article  Google Scholar 

  34. Sirovich L (1987) Turbulence and the dynamics of coherent structures. I. Coherent structures. Q Appl Math 45(3):561–571

    Article  MathSciNet  MATH  Google Scholar 

  35. Cizmas P, Richardson B, Brenner T, OBrien T, Breault R (2008) Acceleration techniques for reduced-order models based on proper orthogonal decomposition. J Comput Phys 227(16):7791–7812

    Article  MathSciNet  MATH  Google Scholar 

  36. Soize C (2017) Uncertainty quantification: an accelerated course with advanced applications in computational engineering. Springer, Berlin

    Book  MATH  Google Scholar 

  37. Desceliers C, Soize C (2004) Nonlinear viscoelastodynamic equations of three-dimensional rotating structures in finite displacement and finite element discretization. Int J Nonlinear Mech 39:343–368

    Article  MATH  Google Scholar 

  38. Genta G (1998) Vibration of structures and machines: practical aspects. Springer, Berlin

    Google Scholar 

  39. Ehrich F (2004) Handbook of rotordynamics. Krieger Publishing Company, Malabar

    Google Scholar 

  40. Rao JS (2011) History of rotating machinery dynamics. History of mechanism and machine science, vol 20, 1st edn. Springer, Berlin

    Book  Google Scholar 

  41. Mignolet M, Przekop A, Rizzi S, Spottswood S (2013) A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures. J Sound Vib 332(10):2437–2460

    Article  Google Scholar 

  42. Laxalde D, Salles L, Blanc L, Thouverez F, et al (2008) Non-linear modal analysis for bladed disks with friction contact interfaces. In: ASME Turbo Expo 2008: Power for Land, Sea, and Air. American Society of Mechanical Engineers Digital Collection, pp 457–467

  43. Joannin C, Thouverez F, Chouvion B (2018) Reduced-order modelling using nonlinear modes and triple nonlinear modal synthesis. Comput Struct 203:18–33

    Article  Google Scholar 

  44. Golub G, Van Loan C (2012) Matrix computations, vol 3. JHU Press, Baltimore

    MATH  Google Scholar 

  45. Mignolet M-P, Soize C (2008) Stochastic reduced order models for uncertain geometrically nonlinear dynamical systems. Comput Methods Appl Mech Eng 197(45–48):3951–3963

    Article  MathSciNet  MATH  Google Scholar 

  46. Capiez-Lernout E, Soize C, Mignolet M-P (2012) Computational stochastic statics of an uncertain curved structure with geometrical nonlinearity in three-dimensional elasticity. Comput Mech 49(1):87–97

    Article  MathSciNet  MATH  Google Scholar 

  47. Capiez-Lernout E, Soize C (2017) An improvement of the uncertainty quantification in computational structural dynamics with nonlinear geometrical effects. Int J Uncertain Quantif 7(1):83–98

    Article  MathSciNet  Google Scholar 

  48. Soize C (2000) A nonparametric model of random uncertainties for reduced matrix models in structural dynamics. Probab Eng Mech 15(3):277–294

    Article  Google Scholar 

  49. Picou A, Capiez-Lernout E, Soize C, Mbaye M (2018) Effects of geometrical nonlinearities for a rotating intentionally mistuned bladed-disk. In: Conference on noise and vibration engineering (ISMA 2018), KU Leuven, pp 1–11

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Soize.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Table of patterns

A Table of patterns

Pattern number

Arrangement

\({\mathcal {P}}_{0}\)

24A

\({\mathcal {P}}_{1}\)

\((5A1B)_4\)

\({\mathcal {P}}_{2}\)

\((AB)_{12}\)

\({\mathcal {P}}_{3}\)

\((4A4B)_{3}\)

\({\mathcal {P}}_{4}\)

4A2B3A2B5A2B3A2B

\({\mathcal {P}}_{5}\)

\((3A3B)_4 \)

\({\mathcal {P}}_{6}\)

\((4A2B)_4\)

\({\mathcal {P}}_{7}\)

\(AB2A2B(AB)_2 2A2B2AAB2B(AB)_2\)

\({\mathcal {P}}_{8}\)

\(2A BA 2B 2A 3B (AB)_{2} 2AB 3A 3B\)

\({\mathcal {P}}_{9}\)

\((2A2B)_6 \)

\({\mathcal {P}}_{10}\)

\(4A4B(2A2B)_{2}2A6B\)

\({\mathcal {P}}_{11}\)

B4AB18A

\({\mathcal {P}}_{12}\)

12A12B

\({\mathcal {P}}_{13}\)

6B12A3B3A

\({\mathcal {P}}_{14}\)

3B15A3B3A

\({\mathcal {P}}_{15}\)

6A3B6A9B

\({\mathcal {P}}_{16}\)

\((3B6A)_23B3A \)

\({\mathcal {P}}_{17}\)

3A6B3A12B

\({\mathcal {P}}_{18}\)

3B12A6B3A

\({\mathcal {P}}_{19}\)

18A6B

\({\mathcal {P}}_{20}\)

3B12A6B3A

\({\mathcal {P}}_{21}\)

6B9A6B3A

\({\mathcal {P}}_{22}\)

6A3B3A12B

\({\mathcal {P}}_{23}\)

9A3B6A6B

\({\mathcal {P}}_{24}\)

14A9B

\({\mathcal {P}}_{25}\)

3A3B3A15B

\({\mathcal {P}}_{26}\)

15B9A

\({\mathcal {P}}_{27}\)

3B6A12B3A

\({\mathcal {P}}_{28}\)

3A21B

\({\mathcal {P}}_{29}\)

\(3A3B(3A6B)_2\)

\({\mathcal {P}}_{30}\)

\((3A3B)_2 3A 9B\)

\({\mathcal {P}}_{31}\)

\((6A6B)_2\)

\({\mathcal {P}}_{32}\)

3B9A9B3A

\({\mathcal {P}}_{33}\)

3B21A

\({\mathcal {P}}_{34}\)

6A6B3A9B

\({\mathcal {P}}_{35}\)

18A6B

\({\mathcal {P}}_{36}\)

3B12A3B6A

\({\mathcal {P}}_{37}\)

3B6A3B3A6B3A

\({\mathcal {P}}_{38}\)

6A8B3A6B

\({\mathcal {P}}_{39}\)

9A3B3A9B

\({\mathcal {P}}_{40}\)

3B9A3B3A3B3A

\({\mathcal {P}}_{41}\)

3B6A6B3A3B3A

\({\mathcal {P}}_{42}\)

3B9A6B6A

\({\mathcal {P}}_{43}\)

\( (3A3B)_4 \)

\({\mathcal {P}}_{44}\)

\((3A9B)_2\)

\({\mathcal {P}}_{45}\)

\((9A3B)_2\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Picou, A., Capiez-Lernout, E., Soize, C. et al. Robust dynamic analysis of detuned-mistuned rotating bladed disks with geometric nonlinearities. Comput Mech 65, 711–730 (2020). https://doi.org/10.1007/s00466-019-01790-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01790-4

Keywords

Navigation