Skip to main content
Log in

A wavelet multiresolution interpolation Galerkin method for targeted local solution enrichment

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A novel wavelet multiresolution interpolation formula is developed for approximating continuous functions defined on an arbitrary two-dimensional domain represented by a set of scattered nodes. The present wavelet interpolant is created explicitly without the need for matrix inversion. It possesses the Kronecker delta function property and does not contain any ad-hoc parameters, leading to an excellent stability and usefulness for function approximation. Using the wavelet multiresolution interpolant to construct trial and weight functions, a wavelet multiresolution interpolation Galerkin method (WMIGM) is proposed for solving elasticity problems. In this WMIGM, the essential boundary conditions can be imposed with ease as in the conventional finite element method. The stiffness matrix can be efficiently obtained through semi-analytical integration using an underlying general database, instead of the numerical integration usually requiring a mesh. The accuracy of the WMIGM is examined through theoretical analysis and benchmark problems. Results demonstrate that the proposed WMIGM has an excellent accuracy, optimal rate of convergence and competitive efficiency, as well as an excellent stability against irregular nodal distribution. Most importantly, by adding more nodes into local region only, a high resolution of localized steep gradients can be achieved as desired without changing the existing nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu GR (2009) Meshfree methods: moving beyond the finite element method, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Liu GR, Quek SS (2013) The finite element method—a practical course, 2nd edn. Butterworth-Heinemann, Waltham

    MATH  Google Scholar 

  3. Li B, Chen X (2014) Wavelet-based numerical analysis: a review and classification. Finite Elem Anal Des 81:14–31

    Article  MathSciNet  Google Scholar 

  4. Lu YY, Belytschko T, Tabbara M (1995) Element-free Galerkin method for wave propagation and dynamic fracture. Comput Methods Appl Mech Eng 126:131–153

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen L, Rabczuk T, Bordas SPA, Liu GR, Zeng KY, Kerfriden P (2012) Extended finite element method with edge-based strain smoothing (ESm-XFEM) for linear elastic crack growth. Comput Methods Appl Mech Eng 209:250–265

    Article  MathSciNet  MATH  Google Scholar 

  6. Liu GR (2016) An overview on meshfree methods: for computational solid mechanics. Int J Comput Methods 13:1630001

    Article  MathSciNet  MATH  Google Scholar 

  7. Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318

    Article  MathSciNet  MATH  Google Scholar 

  8. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Meth Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  9. Garg S, Pant M (2018) Meshfree methods: a comprehensive review of applications. Int J Comput Methods 15:1830001

    Article  MathSciNet  MATH  Google Scholar 

  10. Belytschko T, Lu YY, Gu L, Tabbara M (1995) Element-free Galerkin methods for static and dynamic fracture. Int J Solids Struct 32:2547–2570

    Article  MATH  Google Scholar 

  11. Rabczuk T, Belytschko T (2007) A three-dimensional large deformation meshfree method for arbitrary evolving cracks. Comput Methods Appl Mech Eng 196:2777–2799

    Article  MathSciNet  MATH  Google Scholar 

  12. Li W, Nguyen-Thanh N, Zhou K (2018) Geometrically nonlinear analysis of thin-shell structures based on an isogeometric-meshfree coupling approach. Comput Methods Appl Mech Eng 336:111–134

    Article  MathSciNet  Google Scholar 

  13. Zhang T, Li X (2018) A generalized element-free Galerkin method for Stokes problem. Comput Math Appl 75:3127–3138

    Article  MathSciNet  MATH  Google Scholar 

  14. Hostos JCA, Bencomo AD, Cabrera ESP (2018) Simple iterative procedure for the thermal–mechanical analysis of continuous casting processes using the element-free Galerkin method. J Therm Stresses 41:160–181

    Article  Google Scholar 

  15. Rabczuk T, Belytschko T (2005) Adaptivity for structured meshfree particle methods in 2D and 3D. Int J Numer Methods Eng 63:1559–1582

    Article  MathSciNet  MATH  Google Scholar 

  16. Beissel S, Belytschko T (1996) Nodal integration of the element-free Galerkin method. Comput Methods Appl Mech Eng 139:49–74

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu GR, Zhang GY, Wang YY, Zhong ZH, Li GY, Han X (2007) A nodal integration technique for meshfree radial point interpolation method (NI-RPIM). Int J Solids Struct 44:3840–3860

    Article  MATH  Google Scholar 

  18. Krongauz Y, Belytschko T (1996) Enforcement of essential boundary conditions in meshless approximations using finite elements. Comput Methods Appl Mech Eng 131:133–145

    Article  MathSciNet  MATH  Google Scholar 

  19. Mukherjee YX, Mukherjee S (1997) On boundary conditions in the element-free Galerkin method. Comput Mech 19:264–270

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Meth Eng 50:937–951

    Article  MATH  Google Scholar 

  21. Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Meth Eng 54:1623–1648

    Article  MATH  Google Scholar 

  22. Liu GR, Zhang GY (2013) Smoothed point interpolation methods-G space theory and weakened weak forms. World Scientific, Singapore

    Book  MATH  Google Scholar 

  23. Gu YT, Wang W, Zhang LC, Feng XQ (2011) An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields. Eng Fract Mech 78:175–190

    Article  Google Scholar 

  24. Kazemi Z, Hematiyan MR, Vaghefi R (2017) Meshfree radial point interpolation method for analysis of viscoplastic problems. Eng Anal Boundary Elem 82:172–184

    Article  MathSciNet  MATH  Google Scholar 

  25. Dehghan M, Haghjoo-Saniji M (2017) The local radial point interpolation meshless method for solving Maxwell equations. Eng Comput 33:897–918

    Article  Google Scholar 

  26. Feng SZ, Li AM (2017) Analysis of thermal and mechanical response in functionally graded cylinder using cell-based smoothed radial point interpolation method. Aerosp Sci Technol 65:46–53

    Article  Google Scholar 

  27. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle method. Int J Numer Methods Fluids 20:1081–1106

    Article  MathSciNet  MATH  Google Scholar 

  28. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part I-formulation and theory. Int J Numer Methods Eng 45:251–288

    Article  MATH  Google Scholar 

  29. Wagner GJ, Liu WK (2000) Application of essential boundary conditions in mesh-free methods: a corrected collocation method. Int J Numer Methods Eng 47:1367–1379

    Article  MATH  Google Scholar 

  30. Chen JS, Han W, You Y, Meng X (2003) A reproducing kernel method with nodal interpolation property. Int J Numer Methods Eng 56:935–960

    Article  MathSciNet  MATH  Google Scholar 

  31. Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Methods Appl Mech Eng 143:113–154

    Article  MathSciNet  MATH  Google Scholar 

  32. Li S, Liu WK (1996) Moving least-square reproducing kernel method part II: Fourier analysis. Comput Methods Appl Mech Eng 139:159–193

    Article  MATH  Google Scholar 

  33. Liu WK, Han W, Lu H, Li S, Cao J (2004) Reproducing kernel element method. Part I: theoretical formulation. Comput Methods Appl Mech Eng 193:933–951

    Article  MATH  Google Scholar 

  34. Li S, Lu H, Han W, Liu WK, Simkins DC (2004) Reproducing kernel element method part II: globally conforming I m/C n hierarchies. Comput Methods Appl Mech Eng 193:953–987

    Article  MATH  Google Scholar 

  35. Lu H, Li S, Simkins DC Jr, Liu WK, Cao J (2004) Reproducing kernel element method part III: generalized enrichment and applications. Comput Methods Appl Mech Eng 193:989–1011

    Article  MATH  Google Scholar 

  36. Wagner GJ, Liu WK (2001) Hierarchical enrichment for bridging scales and mesh-free boundary conditions. Int J Numer Methods Eng 50:507–524

    Article  MATH  Google Scholar 

  37. Liu X, Wang J, Zhou Y, Wang J (2017) Wavelet methods and applications in nonlinear mechanics problems. Chin J Solid Mech 38:287–310

    Google Scholar 

  38. Meyer Y (1992) Wavelets and operators. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  39. Yang Z, Liao S (2017) A HAM-based wavelet approach for nonlinear ordinary differential equations. Commun Nonlinear Sci Numer Simul 48:439–453

    Article  MathSciNet  Google Scholar 

  40. Chen X, Yang S, Ma J, He Z (2004) The construction of wavelet finite element and its application. Finite Elem Anal Des 40:541–554

    Article  Google Scholar 

  41. Vasilyev OV, Kevlahan NKR (2005) An adaptive multilevel wavelet collocation method for elliptic problems. J Comput Phys 206:412–431

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu X, Zhou Y, Wang X, Wang J (2013) A wavelet method for solving a class of nonlinear boundary value problems. Commun Nonlinear Sci Numer Simul 18:1939–1948

    Article  MathSciNet  MATH  Google Scholar 

  43. Yang Z, Liao S (2018) On the generalized wavelet-Galerkin method. J Comput Appl Math 331:178–195

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu X, Wang J, Zhou Y (2017) A space–time fully decoupled wavelet Galerkin method for solving a class of nonlinear wave problems. Nonlinear Dyn 90:599–616

    Article  MathSciNet  Google Scholar 

  45. Liu Y, Liu Y, Cen Z (2011) Multi-scale Daubechies wavelet-based method for 2-D elastic problems. Finite Elem Anal Des 47:334–341

    Article  MathSciNet  Google Scholar 

  46. Bertoluzza S, Naldi G, Ravel JC (1994) Wavelet methods for the numerical solution of boundary value problems on the interval. Wavelet Anal Appl 5:425–448

    MathSciNet  MATH  Google Scholar 

  47. Jang GW, Kim JE, Kim YY (2004) Multiscale Galerkin method using interpolation wavelets for two-dimensional elliptic problems in general domains. Int J Numer Methods Eng 59:225–253

    Article  MathSciNet  MATH  Google Scholar 

  48. Sannomaru S, Tanaka S, Yoshida K, Bui TQ, Okazawa S, Hagihara S (2017) Treatment of Dirichlet-type boundary conditions in the spline-based wavelet Galerkin method employing multiple point constraints. Appl Math Model 43:592–610

    Article  MathSciNet  Google Scholar 

  49. Tanaka S, Okada H (2012) A wavelet Galerkin method employing B-spline bases for solid mechanics problems without the use of a fictitious domain. Comput Mech 50:35–48

    Article  MathSciNet  MATH  Google Scholar 

  50. Donoho DL (1992) Interpolating wavelet transforms. Technical Report 408, Department of Statistics, Stanford University

  51. Beylkin G (1992) On the representation of operators in bases of compactly supported wavelet. SIAM J Numer Anal 29:1716–1740

    Article  MathSciNet  MATH  Google Scholar 

  52. Chen MQ, Hwang C, Shih YP (1996) The computation of wavelet-Galerkin approximation on a bounded interval. Int J Numer Methods Eng 39:2921–2944

    Article  MathSciNet  MATH  Google Scholar 

  53. Zhang T, Tian YC, Tade MO, Utomo J (2007) Comments on ‘The computation of wavelet-Galerkin approximation on a bounded interval’. Int J Numer Methods Eng 72:244–251

    Article  MATH  Google Scholar 

  54. Maz’ya V (2011) Sobolev spaces with applications to elliptic partial differential equations, 2nd edn. Springer, New York

    MATH  Google Scholar 

  55. Resnikoff HL, Wells ROJ (1998) Wavelet analysis: the scalable structure information. Springer, New York

    Book  MATH  Google Scholar 

  56. Gasca M, Sauerb T (2000) On the history of multivariate polynomial interpolation. J Comput Appl Math 122:23–35

    Article  MathSciNet  MATH  Google Scholar 

  57. Kincaid D, Cheney W (2002) Numerical analysis: mathematics of scientific computing, 3rd edn. American Mathematical Society, Providence

    MATH  Google Scholar 

  58. Kattan PI (2003) MATLAB guide to finite elements: an interactive approach. Springer, New York

    Book  MATH  Google Scholar 

  59. Timoshenko S, Goodier JN (1951) Theory of elasticity, 2nd edn. McGraw-Hill, New York

    MATH  Google Scholar 

  60. Kim CG, Park J (1998) The condition number of stiffness matrix under p-version of the FEM. Kangweon-Kyungki Math J 6:17–26

    Google Scholar 

Download references

Acknowledgements

This research is supported by grants from the National Natural Science Foundation of China (11502103), and the State Scholarship Fund of China Scholarship Council (201706185027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojing Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations

Appendices

Appendix A: Proof of the decomposition (2.7)

Substituting the two-scale relation (2.3) into the approximation (2.6), yields

$$ S^{j} f({\mathbf{x}}) = \sum\limits_{k \in Even} {\sum\limits_{l \in Even} {f({\mathbf{x}}_{j + 1,k,l} )\theta_{j + 1,k,l} ({\mathbf{x}})} } + \sum\limits_{k \in Even} {\sum\limits_{l \in Odd} {[\sum\limits_{m \in Odd} {p_{m} f({\mathbf{x}}_{j + 1,k,l - m} )} ]\theta_{j + 1,k,l} ({\mathbf{x}})} } + \sum\limits_{k \in Odd} {\sum\limits_{l \in Even} {\left[ {\sum\limits_{n \in Odd} {p_{n} f({\mathbf{x}}_{j + 1,k - n,l} )} } \right]\theta_{j + 1,k,l} ({\mathbf{x}})} } + \sum\limits_{k \in Odd} {\sum\limits_{l \in Odd} {\left[ {\sum\limits_{n \in Odd} {\sum\limits_{m \in Odd} {p_{n} p_{m} f({\mathbf{x}}_{j + 1,k - n,l - m} )} } } \right]\theta_{j + 1,k,l} ({\mathbf{x}})} } $$
(A.1)

in which the property \( p_{k} = \delta_{0,k} \) for \( k \in Even \) is considered. Following this property and Eq. (2.3), there is the relation

$$ \begin{aligned} S^{j} f({\mathbf{x}}_{j + 1,k,l} ) & = \sum\limits_{{n \in {\mathbb{Z}}}} {\sum\limits_{{m \in {\mathbb{Z}}}} {f({\mathbf{x}}_{j,n,m} )\theta (k/2 - n)\theta (l/2 - m)} } \\ & = \sum\limits_{{m \in {\mathbb{Z}}}} {f({\mathbf{x}}_{j + 1,j,k,m} )\sum\limits_{o \in Odd} {p_{o} \theta (l - 2m - o)} } = \sum\limits_{o \in Odd} {p_{o} f({\mathbf{x}}_{j + 1,k,l - o} )} \\ \end{aligned} $$
(A.2)

where \( k \in Even \) and \( l \in Odd \). By using the same method, we also can obtain the relations

$$ \sum\limits_{o \in Odd} {p_{o} f({\mathbf{x}}_{j + 1,k - o,l} )} = S^{j} f({\mathbf{x}}_{j + 1,k,l} ),\quad {\text{for}}\quad k \in Odd\quad {\text{and}}\quad l \in Even $$
(A.3)

and

$$ \sum\limits_{o \in Odd} {\sum\limits_{q \in Odd} {p_{o} p_{q} f({\mathbf{x}}_{j + 1,k - o,l - q} )} } = S^{j} f({\mathbf{x}}_{j + 1,k,l} ),\quad {\text{for}}\quad k,l \in Odd. $$
(A.4)

Substituting Eqs. (A.2A.4) into Eq. (A.1), yields

$$ S^{j} f({\mathbf{x}}) = \sum\limits_{k \in Even} {\sum\limits_{l \in Even} {f({\mathbf{x}}_{j + 1,k,l} )\theta_{j + 1,k,l} ({\mathbf{x}})} } + \sum\limits_{(k,l) \in \Re } {S^{j} f({\mathbf{x}}_{j + 1,k,l} )\theta_{j + 1,k,l} ({\mathbf{x}})} $$
(A.5)

in which \( \Re \) is the set of all integer pair (k, l) in which at least one element is an odd number.

Finally, we can obtain \( R^{j} f({\mathbf{x}}) \) defined by Eq. (2.8) by subtracting \( S^{j} f({\mathbf{x}}) \) given by Eq. (A.5) from \( S^{j + 1} f({\mathbf{x}}) \) shown in Eq. (2.6).

Appendix B: Proof of Theorem 2.2

Since \( f({\mathbf{x}}) \) is sufficiently smooth in the domain \( \Omega \), one always can find a proper supplement of the definition of function \( f({\mathbf{x}}) \) in the domain \( \bar{\Omega } \) such that \( f({\mathbf{x}}) \) is smooth enough in the domain \( \Omega \cup \bar{\Omega } \) [54]. Then following Eqs. (2.122.15), we have

$$ \begin{aligned} S_{L}^{j} f({\mathbf{x}}) & = \sum\limits_{l = 1}^{{N_{j} }} {f({\mathbf{x}}_{l} )\theta_{{j,kx({\mathbf{x}}_{l} ),ky({\mathbf{x}}_{l} )}} ({\mathbf{x}})} + \sum\limits_{{l = - N_{e} }}^{ - 1} {[f({\mathbf{x}}_{l} ) + \tilde{f}_{l} ({\mathbf{x}}_{l} ) - f({\mathbf{x}}_{l} )]\theta_{{j,kx({\mathbf{x}}_{l} ),ky({\mathbf{x}}_{l} )}} ({\mathbf{x}})} \\ & = S^{j} f({\mathbf{x}}) + \sum\limits_{{l = - N_{e} }}^{ - 1} {[\tilde{f}_{l} ({\mathbf{x}}_{l} ) - f({\mathbf{x}}_{l} )]\theta_{{j,kx({\mathbf{x}}_{l} ),ky({\mathbf{x}}_{l} )}} ({\mathbf{x}})} . \\ \end{aligned} . $$
(B.1)

By applying Theorem 2.1 and Eq. (B.1), one can obtain

$$ ||S_{L}^{j} f({\mathbf{x}}) - f({\mathbf{x}})||_{\infty } = ||S^{j} f({\mathbf{x}}) - f({\mathbf{x}})||_{\infty } + \sum\limits_{{l = - N_{e} }}^{ - 1} {||[\tilde{f}_{l} ({\mathbf{x}}_{l} ) - f({\mathbf{x}}_{l} )]\theta_{{j,kx({\mathbf{x}}_{l} ),ky({\mathbf{x}}_{l} )}} ({\mathbf{x}})||_{\infty } } \le C_{1,\infty } 2^{ - j\gamma } + \sum\limits_{{l = - N_{e} }}^{ - 1} {||[\tilde{f}_{l} ({\mathbf{x}}_{l} ) - f({\mathbf{x}}_{l} )]\theta_{{j,kx({\mathbf{x}}_{l} ),ky({\mathbf{x}}_{l} )}} ({\mathbf{x}})||_{\infty } } ,\quad {\text{for}}\quad x \in \Omega . $$
(B.2)

Since \( \tilde{f}_{l} ({\mathbf{x}}) \) is a Lagrange interpolation with order \( \eta_{l} \) of function \( f({\mathbf{x}}) \), by using the relations \( |x_{l} - \tilde{x}_{l,i} | \le \zeta_{1} 2^{ - j} \) and \( |y_{l} - \tilde{y}_{l,i} | \le \zeta_{2} 2^{ - j} \) given in Sect. 2.2, we have [56, 57]

$$ |f({\bar{\mathbf{x}}}_{l} ) - \tilde{f}_{l} ({\bar{\mathbf{x}}}_{l} )| \le \varepsilon_{2} 2^{{ - j\eta_{l} }} $$
(B.3)

in which \( \varepsilon_{2} \) is a constant with the property \( \varepsilon_{2} = 0 \) for \( D_{{\eta_{l} }}^{0} f({\mathbf{x}}) = D_{{\eta_{l} }}^{{\eta_{l} }} f({\mathbf{x}}) \equiv 0 \). On the other hand, considering \( \theta_{j,k,l} ({\mathbf{x}}) \in C_{0}^{\gamma /2 - 1} \Omega_{j,k,l}^{\inf } \), one can obtain

$$ \theta_{j,k,l} ({\mathbf{x}}) = 0,\quad {\text{for}}\quad k \notin (2^{j} x - \gamma + 1,2^{j} x + \gamma - 1)\quad {\text{or}}\quad l \notin (2^{j} y - \gamma + 1,2^{j} y + \gamma - 1) $$
(B.4)

which implies that there are at most \( (2\gamma - 3)^{2} \) wavelet basis functions \( \theta_{j,k,l} ({\mathbf{x}}) \ne 0 \) for any point x. Therefore, Eq. (B.2) can be expressed as

$$ ||S_{L}^{j} f({\mathbf{x}}) - f({\mathbf{x}})||_{\infty } \le C_{1,\infty } 2^{ - j\gamma } + (2\gamma - 3)^{2} \varepsilon_{2} 2^{ - j\eta } \le C_{2,\infty } 2^{ - j\lambda } \quad {\text{for}}\quad x \in \Omega $$
(B.5)

where the constant \( C_{2,\infty } = 0 \), if \( D_{\lambda }^{0} f({\mathbf{x}}) = D_{\lambda }^{\lambda } f({\mathbf{x}}) \equiv 0 \). By applying Eq. (B.5), Eq. (2.18) can be obtained readily [54, 55].

Appendix C: Proof of Proposition 2.1

By applying the property of the modified wavelet basis \( \varphi_{j,l} ({\mathbf{x}}_{k} ) = \delta_{k,l} \) for \( k,l = 1,2, \ldots N_{i} \) given in Sect. 2.2, we can obtain directly

$$ P_{{j_{0} }}^{{j_{0} }} f({\mathbf{x}}_{k} ) \equiv S^{{j_{0} }} f({\mathbf{x}}_{k} ) = f({\mathbf{x}}_{k} ),\quad {\text{for }}\;{\text{all }}\;{\text{nodes}}{\mathbf{x}}_{k} . $$
(C.1)

On the other hand, we assume that for \( j_{0} \le o < J \) there is the relation

$$ P_{{j_{0} }}^{o} f({\mathbf{x}}_{j,n,m} ) \equiv f({\mathbf{x}}_{j,n,m} ),\quad {\text{for}}\;{\text{all}}\;(n,m) \in \Re_{j} \quad {\text{and}}\quad j_{0} \le j \le o. $$
(C.2)

Then following Eqs. (2.202.22), we have

$$ P_{{j_{0} }}^{o + 1} f({\mathbf{x}}_{j,n,m} ) = P_{{j_{0} }}^{o} f({\mathbf{x}}_{j,n,m} ) + \sum\limits_{{(k,l) \in \Re_{o} }} {[f({\mathbf{x}}_{o + 1,k,l} ) - P_{{j_{0} }}^{o} f({\mathbf{x}}_{o + 1,k,l} )]\theta_{o + 1,k,l} } ({\mathbf{x}}_{j,n,m} ) $$
(C.3)

where \( (n,m) \in \Re_{j} \) and \( j_{0} \le j \le o + 1 \).

Due to \( \theta (q) = \delta_{0,q} \) for all \( q \in {\mathbb{Z}} \), there is \( \theta_{o + 1,k,l} ({\mathbf{x}}_{j,n,m} ) = \theta (2^{o + 1 - j} n - k)\theta (2^{o + 1 - j} m - l) = 0 \) for all nodes \( {\mathbf{x}}_{j,n,m} \), \( j_{0} \le j \le o \), because both of \( 2^{o + 1 - j} n \) and \( 2^{o + 1 - j} m \) are even numbers, and at least one of k and l is odd number. Therefore, Eq. (C.3) and the assumption (C.2) state

$$ P_{{j_{0} }}^{o + 1} f({\mathbf{x}}_{j,n,m} ) = P_{{j_{0} }}^{o} f({\mathbf{x}}_{j,n,m} ) = f({\mathbf{x}}_{j,n,m} ),\quad {\text{for}}\quad j_{0} \le j \le o. $$
(C.4)

For \( j = o + 1 \), by using the property \( \theta_{o + 1,k,l} ({\mathbf{x}}_{o + 1,n,m} ) = \delta_{n,k} \delta_{m,l} \), Eq. (C.3) can be reduced into

$$ \begin{aligned} P_{{j_{0} }}^{o + 1} f({\mathbf{x}}_{o + 1,n,m} ) & = P_{{j_{0} }}^{o} f({\mathbf{x}}_{o + 1,n,m} ) + \sum\limits_{{(k,l) \in \Re_{o} }} {[f({\mathbf{x}}_{o + 1,k,l} ) - P_{{j_{0} }}^{o} f({\mathbf{x}}_{o + 1,k,l} )]\delta_{n,k} \delta_{m,l} } \\ & = P_{{j_{0} }}^{o} f({\mathbf{x}}_{o + 1,n,m} ) + f({\mathbf{x}}_{o + 1,n,m} ) - P_{{j_{0} }}^{o} f({\mathbf{x}}_{o + 1,n,m} ) = f({\mathbf{x}}_{o + 1,n,m} ). \\ \end{aligned} $$
(C.5)

Equations (C.4, C.5) yield

$$ P_{{j_{0} }}^{o + 1} f({\mathbf{x}}_{j,n,m} ) \equiv f({\mathbf{x}}_{j,n,m} ),\quad {\text{for}}\;{\text{ all}}\;(n,m) \in \Re_{j} \quad {\text{and}}\quad j_{0} \le j \le o + 1. $$
(C.6)

Finally, one can obtain Proposition 2.1 by combining the recurrence relations (C.2, C.6) with the starting condition (C.1).

Appendix D: Proof of Theorem 2.3

Following the relations (2.19, 2.20), for \( n > j_{0} \) there is the relation

$$ ||f({\mathbf{x}}) - P_{{j_{0} }}^{n} f({\mathbf{x}})||_{\infty } \le ||f({\mathbf{x}}) - P_{{j_{0} }}^{n - 1} f({\mathbf{x}})||_{\infty } + \sum\limits_{{(k,l) \in \Re_{n - 1} }} {|f({\mathbf{x}}_{j + 1,k,l} ) - P_{{j_{0} }}^{n - 1} f({\mathbf{x}}_{j + 1,k,l} )| \times ||\theta_{j + 1,k,l} ({\mathbf{x}})||_{\infty } } . . $$
(D.1)

By applying \( \theta_{j,k,l} ({\mathbf{x}}) \in C_{0}^{\gamma /2 - 1} \Omega_{j,k,l}^{\inf } \) and Eq. (B.4), Eq. (D.1) can be expressed as

$$ | |f({\mathbf{x}}) - P_{{j_{0} }}^{n} f({\mathbf{x}})||_{\infty } \le \varepsilon_{3} ||f({\mathbf{x}}) - P_{{j_{0} }}^{n - 1} f({\mathbf{x}})||_{\infty } $$
(D.2)

in which \( \varepsilon_{3} \) is a constant. By using Eq. (D.2) iteratively, and considering \( P_{{j_{0} }}^{{j_{0} }} f({\mathbf{x}}) = S_{L}^{{j_{0} }} f({\mathbf{x}}) \) and Theorem 2.2, we have

$$ | |f({\mathbf{x}}) - P_{{j_{0} }}^{J} f({\mathbf{x}})||_{\infty } \le \varepsilon_{4} C_{2,\infty } ||f({\mathbf{x}}) - S_{L}^{{j_{0} }} f({\mathbf{x}})||_{\infty } \le C_{3,\infty } 2^{{ - j_{0} \lambda }} $$
(D.3)

where \( \varepsilon_{4} \) is a constant, and the constant \( C_{3,\infty } = 0 \) if \( D_{\lambda }^{0} f({\mathbf{x}}) = D_{\lambda }^{\lambda } f({\mathbf{x}}) \equiv 0 \). On the basis of Eq. (D.3), it is very easy to check Eq. (2.23), as well as Eq. (2.24) [54, 55].

Appendix E: Evaluation of connection coefficients

Since \( \theta^{(\alpha )} (x) = 0 \), \( \alpha = 0,1, \ldots ,\gamma /2 \) for \( |x| > \gamma - 1 \), by directly examining the definition (4.23) of the three-term multiresolution connection coefficient \( \Gamma_{k,l}^{n,m} (j_{1} ,j_{2} ,x) \), one can obtain directly

$$ \Gamma_{k,l}^{n,m} (j_{1} ,j_{2} ,x) = \Gamma_{k,l}^{n,m} (j_{1} ,j_{2} ,\gamma - 1),\quad {\text{for}}\quad x \ge \gamma - 1 $$
(E.1)

and

$$ \Gamma_{k,l}^{n,m} (j_{1} ,j_{2} ,x) = 0,\quad {\text{for}}\quad x \le 1 - \gamma ,\quad {\text{or}}\quad |k| \ge (2^{{j_{1} }} + 1)(\gamma - 1),\quad {\text{or}}\quad |l| \, \ge (2^{{j_{2} }} + 1)(\gamma - 1). $$
(E.2)

Then, substituting the two-scale relation (2.3) into Eq. (4.23), and applying Eq. (E.2), we have

$$ \begin{aligned} \Gamma_{k,l}^{n,m} (j_{1} ,0,x) & = 2^{(n + m - 1)} \sum\limits_{o = 1 - \gamma }^{\gamma - 1} {\sum\limits_{q = 1 - \gamma }^{\gamma - 1} {p_{o} p_{q} \int_{1 - \gamma }^{2x - o} {\frac{{d^{n} \theta (y)}}{{dy^{n} }}\frac{{d^{m} \theta [2^{{j_{1} - 1}} y - (k - 2^{{j_{1} - 1}} o)]}}{{dy^{m} }}\theta [y - (2l + q - o)]dy} } } \\ & = 2^{(n + m - 1)} \sum\limits_{o = 1 - \gamma }^{\gamma - 1} {\sum\limits_{q = 1 - \gamma }^{\gamma - 1} {p_{o} p_{q} \Gamma_{{k - 2^{{j_{1} - 1}} o,2l + q - o}}^{n,m} (j_{1} - 1,0,2x - o)} } \\ \end{aligned} $$
(E.3)

and

$$ \Gamma_{k,l}^{n,m} (j_{1} ,j_{2} ,x) = 2^{(n + m - 1)} \sum\limits_{o = 1 - \gamma }^{\gamma - 1} {\sum\limits_{q = 1 - \gamma }^{\gamma - 1} {p_{o} p_{q} \Gamma_{{2k + q - 2^{{j_{1} }} o,l - 2^{{j_{2} - 1}} o}}^{n,m} (j_{1} ,j_{2} - 1,2x - o)} } . $$
(E.4)

One can see that the coefficients \( \Gamma_{k,l}^{n,m} (j_{1} ,0,x) \) for \( j_{1} \ge 1 \) can be obtained readily by applying Eq. (E.3) iteratively, when the coefficients \( \Gamma_{k,l}^{n,m} (0,0,x) \) are known. Then, the connection coefficients \( \Gamma_{k,l}^{n,m} (j_{1} ,j_{2} ,x) \) for \( j_{1} ,j_{2} \ge 0 \) and \( k,l \in {\mathbb{Z}} \) can be evaluated through \( \Gamma_{k,l}^{n,m} (j_{1} ,0,x) \) and Eq. (E.4).

Further, the coefficient \( \Gamma_{k,l}^{n,m} (0,0,x) \) can be expressed as

$$ \Gamma_{k,l}^{n,m} (0,0,x) = \Gamma_{ - l,k - l}^{n,m} (x - l) - \Gamma_{ - l,k - l}^{n,m} (1 - \gamma - l) $$
(E.5)

where the classical three-term connection coefficient [52, 53]

$$ \Gamma_{k,l}^{n,m} (x) = \int_{1 - \gamma }^{x} {\theta (y)\theta^{(n)} (y - k)\theta^{(m)} (y - l)dy} $$
(E.6)

which possesses the properties [52, 53]

$$ \Gamma_{k,l}^{n,m} (x) = \Gamma_{k,l}^{n,m} (\gamma - 1),\quad {\text{for}}\quad x \ge \gamma - 1 $$
(E.7)

and

$$ \Gamma_{k,l}^{n,m} (x) = 0,\quad {\text{for}}\quad x \le 1 - \gamma \quad {\text{or}}\quad |k| \ge 2\gamma - 2\quad {\text{or}}\quad |l| \, \ge 2\gamma - 2\quad {\text{or}}\quad k \ge x + \gamma - 1\quad {\text{or}}\quad l \ge x + \gamma - 1. $$
(E.8)

Substituting the two-scale relation (2.3) into Eq. (E.6), and applying Eq. (E.8), yields

$$ \begin{aligned} \Gamma_{k,l}^{n,m} (x) & = 2^{n + m} \sum\limits_{i = 1 - \gamma }^{\gamma - 1} {\sum\limits_{j = 1 - \gamma }^{\gamma - 1} {\sum\limits_{o = 1 - \gamma }^{\gamma - 1} {p_{i} p_{j} p_{o} } } } \int_{1 - \gamma }^{x} {\theta (2y - i)\theta^{(n)} (2y - 2k - j)\theta^{(m)} (2y - 2l - o)dy} \\ & = 2^{n + m - 1} \sum\limits_{i = 1 - \gamma }^{\gamma - 1} {\sum\limits_{j = 3 - 2\gamma }^{2\gamma - 3} {\sum\limits_{o = 3 - 2\gamma }^{2\gamma - 3} {p_{i} p_{j + i - 2k} p_{o + i - 2k} \Gamma_{j,o}^{n,m} (2x - i)} } } . \\ \end{aligned} $$
(E.9)

It can be found that the values of \( \Gamma_{k,l}^{n,m} (x) \) at all dyadic points \( x = k/2^{j} \) can be obtained readily, if the values of \( \Gamma_{k,l}^{n,m} (x) \) values at integer points are known. These values at integer points can be evaluated by using a modified version of the algorithm which is developed for orthogonal wavelets by Chen et al. [52] and Zhang et al. [53]. In the following, an alternative method which is much easier to implement compared with the existing algorithm [52, 53] will be proposed. This algorithm also can be directly extended to calculate the three-term connection coefficient for other wavelets.

For integer x, there is the relation

$$ \begin{aligned} \Gamma_{k,l}^{n,m} (x) & = \sum\limits_{i = 1 - \gamma }^{x - 1} {\int_{i}^{i + 1} {\theta (y)\theta^{(n)} (y - k)\theta^{(m)} (y - l)dy} } \\ & = \sum\limits_{i = 1 - \gamma }^{x - 1} {\int_{0}^{1} {\theta (y + i)\theta^{(n)} (y - k + i)\theta^{(m)} (y - l + i)dy} } = \sum\limits_{i = 1 - \gamma }^{x - 1} {\Lambda_{ - i,k - i,l - i}^{n,m} } \\ \end{aligned} $$
(E.10)

where the integral

$$ \Lambda_{i,j,k}^{n,m} = \int_{0}^{1} {\theta (y - i)\theta^{(n)} (y - j)\theta^{(m)} (y - k)dy} . $$
(E.11)

It can be seen from Eq. (E.10) that the values of \( \Gamma_{k,l}^{n,m} (x) \) at integer points can be obtained readily, when the integrals \( \Lambda_{i,j,k}^{n,m} \) are known. Considering \( \theta^{(\alpha )} (x) = 0 \), \( \alpha = 0,1, \ldots ,\gamma /2 \) for \( |x| > \gamma - 1 \), it is easy to check the relation

$$ \Lambda_{i,j,k}^{n,m} = 0,\quad {\text{for}}\quad i,j,{\text{or }}k \notin \{ 2 - \gamma ,3 - \gamma , \ldots ,\gamma - 1\} . $$
(E.12)

Substituting the two-scale relation (2.3) into Eq. (E.11), and applying Eq. (E.12), one can obtain

$$ \begin{aligned} \Lambda_{i,j,k}^{n,m} & = 2^{n + m} \sum\limits_{l = 1 - \gamma }^{\gamma - 1} {\sum\limits_{o = 1 - \gamma }^{\gamma - 1} {\sum\limits_{q = 1 - \gamma }^{\gamma - 1} {p_{l} p_{o} p_{q} \int_{0}^{1} {\theta (2y - 2i - l)\theta^{(n)} (2y - 2j - o)\theta^{(m)} (2y - 2k - q)dy} } } } \\ & = 2^{n + m - 1} \sum\limits_{l = 2 - \gamma }^{\gamma - 1} {\sum\limits_{o = 2 - \gamma }^{\gamma - 1} {\sum\limits_{q = 2 - \gamma }^{\gamma - 1} {p_{l - 2i} p_{o - 2j} p_{q - 2k} \int_{0}^{2} {\theta (y - l)\theta^{(n)} (y - o)\theta^{(m)} (y - q)dy} } } } \\ & = 2^{n + m - 1} \sum\limits_{l = 2 - \gamma }^{\gamma - 1} {\sum\limits_{o = 2 - \gamma }^{\gamma - 1} {\sum\limits_{q = 2 - \gamma }^{\gamma - 1} {(p_{l - 2i} p_{o - 2j} p_{q - 2k} + p_{l - 2i + 1} p_{o - 2j + 1} p_{q - 2k + 1} )\Lambda_{l,o,q}^{n,m} } } } . \\ \end{aligned} $$
(E.13)

Letting \( i,j,{\text{and }}k = 2 - \gamma ,3 - \gamma , \ldots ,\gamma - 1 \), respectively in Eq. (E.13), yields

$$ {\mathbf{B\Lambda }}^{n,m} = {\varvec{\Lambda}}^{n,m} $$
(E.14)

in which the matrix \( {\mathbf{B}} = \{ b_{gh} = 2^{n + m - 1} (p_{l - 2i} p_{o - 2j} p_{q - 2k} + p_{l - 2i + 1} p_{o - 2j + 1} p_{q - 2k + 1} )\} \), the vector \( {\varvec{\Lambda}}^{n,m} = \{ \Lambda_{g}^{n,m} = \Lambda_{i,j,k}^{n,m} \}^{\text{T}} \), and subscripts \( g = (i + \gamma - 2)(2\gamma - 2)^{2} + (j + \gamma - 2)(2\gamma - 2) + k + \gamma - 1 \) and \( h = (l + \gamma - 2)(2\gamma - 2)^{2} + (o + \gamma - 2)(2\gamma - 2) + q + \gamma - 1 \).

One can see from Eq. (E.14) that \( {\varvec{\Lambda}}^{n,m} \) is an eigenvector of the matrix B corresponding to the unit eigenvalue. It can be found by numerical experiment that there are \( 1 \le \bar{\mu } \le (n + m + 1)(n + m + 2)/2 \) linearly independent eigenvectors \( {\bar{\mathbf{\Lambda }}}_{o}^{n,m} = \{ \bar{\Lambda }_{o,i,j,k}^{n,m} \}^{\text{T}} \), \( o = 1,2, \ldots ,\bar{\mu } \), whose eigenvalues are all equivalent to 1. Thus, the integral \( \Lambda_{i,j,k}^{n,m} \) can be expressed as

$$ \Lambda_{i,j,k}^{n,m} = \sum\limits_{o = 1}^{{\bar{\mu }}} {\lambda_{o} \bar{\Lambda }_{o,i,j,k}^{n,m} } $$
(E.15)

where the coefficients \( \lambda_{o} \) for \( o = 1,2, \ldots ,\bar{\mu } \) should be determined by additional constraint conditions.

Based on Theorem 2.1, one can obtain

$$ \sum\limits_{{i \in {\mathbb{Z}}}} {i^{a} \theta (x - i)} = x^{a} ,\quad \sum\limits_{{j \in {\mathbb{Z}}}} {j^{b} \theta^{(n)} (x - j)} = \frac{b!}{(b - n)!}x^{b - n} ,\quad \sum\limits_{{k \in {\mathbb{Z}}}} {k^{c} \theta^{(m)} (x - k)} = \frac{c!}{(c - m)!}x^{c - m} $$
(E.16)

where \( a,b,c = 0,1, \ldots ,\gamma - 1 \) and \( d! = \infty \) for \( d < 0 \). Based on Eq. (E.16), we have

$$ \sum\limits_{{i \in {\mathbb{Z}}}} {\sum\limits_{{j \in {\mathbb{Z}}}} {\sum\limits_{{k \in {\mathbb{Z}}}} {i^{a} j^{b} k^{c} \theta (x - i)\theta^{(n)} (x - j)\theta^{(m)} (x - k)} } } = \frac{b!c!}{(b - n)!(c - m)!}x^{a + b + c - n - m} . $$
(E.17)

Integrating both sides of Eq. (E.17) over [0, 1], yields

$$ \sum\limits_{i = 2 - \gamma }^{\gamma - 1} {\sum\limits_{j = 2 - \gamma }^{\gamma - 1} {\sum\limits_{k = 2 - \gamma }^{\gamma - 1} {i^{a} j^{b} k^{c} \Lambda_{i,j,k}^{n,m} } } } = \frac{b!c!}{(a + b + c - n - m + 1)(b - n)!(c - m)!},\quad {\text{for}}\quad a,b,c = 0,1, \ldots ,\gamma - 1. $$
(E.18)

Substituting Eq. (E.15) into Eq. (E.18), gives

$$ \sum\limits_{o = 1}^{{\bar{\mu }}} {\lambda_{o} } \sum\limits_{i = 2 - \gamma }^{\gamma - 1} {\sum\limits_{j = 2 - \gamma }^{\gamma - 1} {\sum\limits_{k = 2 - \gamma }^{\gamma - 1} {i^{a} j^{b} k^{c} \bar{\Lambda }_{o,i,j,k}^{n,m} } } } = \frac{b!c!}{(a + b + c - n - m + 1)(b - n)!(c - m)!},\quad {\text{for}}\quad a,b,c = 0,1, \ldots ,\gamma - 1. $$
(E.19)

We note that Eq. (E.19) includes \( \gamma^{3} \) equations for coefficients \( \lambda_{o} \), \( o = 1,2, \ldots ,\bar{\mu } \), which is an over-determined linear system, since \( \bar{\mu } \le (n + m + 1)(n + m + 2)/2 \le (\gamma + 1)(\gamma + 2)/2 < \gamma^{3} \). But the numerical experiment shows that this over-determined linear system is compatible. Therefore, the coefficients \( \lambda_{o} \) can be determined by using the least square method to solve Eq. (E.19). Once these coefficients are obtained, the integral \( \Lambda_{i,j,k}^{n,m} \) can be evaluated through Eq. (E.15). Then, the values of \( \Gamma_{k,l}^{n,m} (x) \) at integer points can be calculated by Eq. (E.10). Based on these basic data values, one can obtain the three-term multiresolution connection coefficient \( \Gamma_{k,l}^{n,m} (j_{1} ,j_{2} ,x) \) with ease, by using the relations (E.9, E.5, E.3, E.4) in sequence.

For the two-term multiresolution connection coefficient \( {\rm T}_{j,k}^{n,m} (x) \) defined by Eq. (4.24), by considering \( \theta^{(\alpha )} (x) = 0 \), \( \alpha = 0,1, \ldots ,\gamma /2 \) for \( |x| > \gamma - 1 \), there are also the following relations

$$ {\rm T}_{j,k}^{n,m} (x) = {\rm T}_{j,k}^{n,m} (\gamma - 1),\quad {\text{for}}\quad x \ge \gamma - 1 $$
(E.20)

and

$$ {\rm T}_{j,k}^{n,m} (x) = 0,\quad {\text{for}}\quad x \le 1 - \gamma ,\quad {\text{or}}\quad |k| \ge (2^{j} + 1)(\gamma - 1). $$
(E.21)

By considering \( \theta (x) = 0 \) for \( |x| > \gamma - 1 \), Eq. (E.16) gives

$$ 1 = \sum\limits_{l = 3 - 2\gamma }^{[x] + \gamma } {\theta (y - l)} ,\quad {\text{for}}\quad y \in [1 - \gamma ,x] $$
(E.22)

where \( [x] \) is the nearest integer to x. Substituting Eq. (E.22) into Eq. (4.24), yields

$$ {\rm T}_{j,k}^{n,m} (x) = \sum\limits_{l = 3 - 2\gamma }^{[x] + \gamma } {\int_{1 - \gamma }^{x} {\theta^{(n)} (y)\theta^{(m)} (2^{j} y - k)\theta (y - l)dy} } = \sum\limits_{l = 3 - 2\gamma }^{[x] + \gamma } {\Gamma_{k,l}^{n,m} (j,0,x)} . $$
(E.23)

It can be seen that the two-term multiresolution connection coefficient \( {\rm T}_{j,k}^{n,m} (x) \) can be obtained based on Eq. (E.23) and the three-term multiresolution connection coefficient \( \Gamma_{k,l}^{n,m} (j_{1} ,j_{2} ,x) \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Liu, G.R., Wang, J. et al. A wavelet multiresolution interpolation Galerkin method for targeted local solution enrichment. Comput Mech 64, 989–1016 (2019). https://doi.org/10.1007/s00466-019-01691-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01691-6

Keywords

Navigation