Skip to main content
Log in

Adaptive consistent element-free Galerkin method for phase-field model of brittle fracture

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Efficient implementation of the element-free Galerkin (EFG) method for a phase-field model of linear elastic fracture mechanics is presented, in which the convenience of the meshfree method to construct high order approximation functions and to implement h-adaptivity is fully exploited. A second-order moving-least squares approximation for both displacement and phase field is employed. Domain integration of the weak forms is evaluated by the quadratically consistent 3-point integration scheme. The refinement criterion using maximum residual strain energy history is proposed and the insertion of nodes is based on the background mesh. Numerical results show that the developed method is more efficient than the standard finite element method (3-node triangle element) due to the proposed h-adaptivity. In comparison with the standard EFG method, the proposed consistent EFG method significantly improves the computational efficiency and accuracy. The advantage of the quadratic approximation is also demonstrated. In addition, the feasibility of extending the proposed method to 3D is validated by the modeling of a twisting crack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198

    Article  Google Scholar 

  2. Moës N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46(1):131–150

    Article  MathSciNet  MATH  Google Scholar 

  3. Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45:601–620

    Article  MATH  Google Scholar 

  4. Fleming M, Chu YA, Moran B, Belytschko T (1997) Enriched element-free galerkin methods for crack tip fields. Int J Numer Methods Eng 40(8):1483–1504

    Article  MathSciNet  Google Scholar 

  5. Wang YY (2017) Abaqus analysis users’ guide: analysis volume. China Machine Press, Beijing

    Google Scholar 

  6. Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46(8):1319–1342

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourdin B, Francfort GA, Marigo JJ (2000) Numerical experiments in revisited brittle fracture. J Mech Phys Solids 48(4):797–826

    Article  MathSciNet  MATH  Google Scholar 

  8. Kuhn C, Müller R (2008) A phase field model for fracture. PAMM 8:10223–10224

    Article  MATH  Google Scholar 

  9. Amor H, Marigo JJ, Maurini C (2009) Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments. J Mech Phys Solids 57:1209–1229

    Article  MATH  Google Scholar 

  10. Miehe C, Hofacker M, Welschinger F (2010) A phase field model for rate-independent crack propagation: robust algorithmic implementation based on operator splits. Comput Methods Appl Mech Eng 199:2765–2778

    Article  MathSciNet  MATH  Google Scholar 

  11. Miehe C, Welschinger F, Hofacker M (2010) Thermodynamically consistent phase-field models of fracture: variational principles and multi-field FE implementations. Int J Numer Methods Eng 83:1273–1311

    Article  MathSciNet  MATH  Google Scholar 

  12. Borden MJ, Hughes TJR, Landis CM, Verhoosel CV (2014) A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework. Comput Methods Appl Mech Eng 273:100–118

    Article  MathSciNet  MATH  Google Scholar 

  13. Ambati M, Gerasimov T, De Lorenzis L (2015) A review on phase-field models of brittle fracture and a new fast hybrid formulation. Comput Mech 55:383–405

    Article  MathSciNet  MATH  Google Scholar 

  14. Nguyen TT, Yvonnet J, Zhu QZ, Bornert M, Chateau C (2015) A phase field method to simulate crack nucleation and propagation in strongly heterogeneous materials from direct imaging of their microstructure. Eng Fract Mech 139:18–39

    Article  Google Scholar 

  15. Wu J (2017) A unified phase-field theory for the mechanics of damage and quasi-brittle failure. J Mech Phys Solids 103:72–99

    Article  MathSciNet  Google Scholar 

  16. Borden MJ, Verhoosel CV, Scott MA, Hughes TJR, Landis CM (2012) A phase-field description of dynamic brittle fracture. Comput Methods Appl Mech Eng 217–220(1):77–95

    Article  MathSciNet  MATH  Google Scholar 

  17. Bourdin B, Larsen CJ, Richardson CL (2010) A time-discrete model for dynamic fracture based on crack regularization. Int J Fract 168(168):133–143

    MATH  Google Scholar 

  18. Ambati M, Gerasimov T, Lorenzis LD (2015) Phase-field modeling of ductile fracture. Comput Mech 55(5):1017–1040

    Article  MathSciNet  MATH  Google Scholar 

  19. Ambati M, Kruse R, Lorenzis LD (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57(1):149–167

    Article  MathSciNet  MATH  Google Scholar 

  20. Miehe C, Aldakheel F, Teichtmeister S (2017) Phase-field modeling of ductile fracture at finite strains: a robust variational-based numerical implementation of a gradient-extended theory by micromorphic regularization. Int J Numer Methods Eng 111:1–32

    Article  MathSciNet  Google Scholar 

  21. Crosby T, Ghoniem N (2012) Phase-field modeling of thermomechanical damage in tungsten under severe plasma transients. Comput Mech 50(2):159–168

    Article  MathSciNet  MATH  Google Scholar 

  22. Miehe C, Dal H, Schänzel LM, Raina A (2016) A phase-field model for chemo-mechanical induced fracture in lithium-ion battery electrode particles. Int J Numer Methods Eng 106(9):683–711

    Article  MathSciNet  MATH  Google Scholar 

  23. Zuo P, Zhao YP (2016) Phase field modeling of lithium diffusion, finite deformation, stress evolution and crack propagation in lithium ion battery. Extreme Mech Lett 9:467–479

    Article  Google Scholar 

  24. Miehe C, Mauthe S, Teichtmeister S (2015) Minimization principles for the coupled problem of Darcy–Biot-type fluid transport in porous media linked to phase field modeling of fracture. J Mech Phys Solids 82:186–217

    Article  MathSciNet  Google Scholar 

  25. Miehe C, Kienle D, Aldakheel F, Teichtmeister S (2016) Phase field modeling of fracture in porous plasticity: a variational gradient-extended Eulerian framework for the macroscopic analysis of ductile failure. Comput Methods Appl Mech Eng 312:3–50

    Article  MathSciNet  Google Scholar 

  26. Heider Y, Markert B (2016) A phase-field modeling approach of hydraulic fracture in saturated porous media. Mech Res Commun 80:38–46

    Article  Google Scholar 

  27. Abdollahi A, Arias I (2012) Phase-field modeling of crack propagation in piezoelectric and ferroelectric materials with different electromechanical crack conditions. J Mech Phys Solids 60(12):2100–2126

    Article  MathSciNet  Google Scholar 

  28. Wilson ZA, Borden MJ, Landis CM (2013) A phase-field model for fracture in piezoelectric ceramics. Int J Fract 183(2):135–153

    Article  Google Scholar 

  29. Raina A, Miehe C (2016) A phase-field model for fracture in biological tissues. Biomech Model Mechanobiol 15(3):479–496

    Article  Google Scholar 

  30. Gültekin O, Dal H, Holzapfel GA (2018) Numerical aspects of anisotropic failure in soft biological tissues favor energy-based criteria: a rate-dependent anisotropic crack phase-field model. Comput Methods Appl Mech Eng 331:23–52

    Article  MathSciNet  Google Scholar 

  31. Areias P, Rabczuk T, Msekh MA (2016) Phase-field analysis of finite-strain plates and shells including element subdivision. Comput Methods Appl Mech Eng 312:322–350

    Article  MathSciNet  Google Scholar 

  32. Artina M, Fornasier M, Micheletti S, Perotto S (2015) Anisotropic mesh adaptation for crack detection in brittle materials. SIAM J Sci Comput 37(4):B633–B659

    Article  MathSciNet  MATH  Google Scholar 

  33. Radszuweit M, Kraus C (2017) Modeling and simulation of non-isothermal rate-dependent damage processes in inhomogeneous materials using the phase-field approach. Comput Mech 60(1):1–17

    Article  MathSciNet  MATH  Google Scholar 

  34. Burke S, Ortner C, Süli E (2010) An adaptive finite element approximation of a variational model of brittle fracture. SIAM J Numer Anal 48(3):980–1012

    Article  MathSciNet  MATH  Google Scholar 

  35. Heister T, Wheeler MF, Wick T (2015) A primal-dual active set method and predictor–corrector mesh adaptivity for computing fracture propagation using a phase-field approach. Comput Methods Appl Mech Eng 290:466–495

    Article  MathSciNet  MATH  Google Scholar 

  36. Badnava H, Msekh MA, Etemadi E, Rabczuk T (2018) An h-adaptive thermo-mechanical phase field model for fracture. Finite Elem Anal Des 138(2018):31–47

    Article  Google Scholar 

  37. Lee S, Wheeler MF, Wick T (2017) Iterative coupling of flow, geomechanics and adaptive phase-field fracture including level-set crack width approaches. Comput Appl Math 314(C):40–60

    Article  MathSciNet  MATH  Google Scholar 

  38. Lee S, Wheeler MF, Wick T (2016) Pressure and fluid-driven fracture propagation in porous media using an adaptive finite element phase field model. Comput Methods Appl Mech Eng 305:111–132

    Article  MathSciNet  MATH  Google Scholar 

  39. Klinsmann M, Rosato D, Kamlah M, Mcmeeking RM (2015) An assessment of the phase field formulation for crack growth. Comput Methods Appl Mech Eng 294(2):313–330

    Article  MathSciNet  MATH  Google Scholar 

  40. Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin

    MATH  Google Scholar 

  41. Liu GR (2009) Mesh free methods: moving beyond the finite element method, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  42. Belytschko T, Krongauz Y, Organ D (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139:3–47

    Article  MATH  Google Scholar 

  43. Nguyen VP, Rabczuk T, Bordas S (2008) Meshless methods: a review and computer implementation aspects. Math Comput Simul 79:763–813

    Article  MathSciNet  MATH  Google Scholar 

  44. Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256

    Article  MathSciNet  MATH  Google Scholar 

  45. Krysl P, Belytschko T (1997) Element-free Galerkin method convergence of the continuous and discontinuous shape functions. Comput Methods Appl Mech Eng 148:257–277

    Article  MathSciNet  MATH  Google Scholar 

  46. Amiri F, Millán D, Arroyo M, Silani M, Rabczuk T (2016) Fourth order phase-field model for local max-ent approximants applied to crack propagation. Comput Methods Appl Mech Eng 312(2016):254–275

    Article  MathSciNet  Google Scholar 

  47. Duan QL, Li XK, Zhang HW, Belytschko T (2012) Second-order accurate derivatives and integration schemes for meshfree methods. Int J Numer Methods Eng 92:399–424

    Article  MathSciNet  MATH  Google Scholar 

  48. Duan QL, Gao X, Wang BB et al (2014) Consistent element-free Galerkin method. Int J Numer Methods Eng 99:79–101

    Article  MathSciNet  MATH  Google Scholar 

  49. Fernández-Méndez S, Huerta A (2004) Imposing essential boundary conditions in mesh-free methods. Comput Methods Appl Mech Eng 193(12):1257–1275

    Article  MathSciNet  MATH  Google Scholar 

  50. Miehe C (1998) Comparison of two algorithms for the computation of fourth-order isotropic tensor functions. Comput Struct 66(1):37–43

    Article  MathSciNet  MATH  Google Scholar 

  51. Chen JS, Wu CT, Yoon S, You Y (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 50:435–466

    Article  MATH  Google Scholar 

  52. Liu GR, Zhang J, Lam KY, Li H, Xu G, Zhong ZH, Li GY, Han X (2008) A gradient smoothing method (GSM) with directional correction for solid mechanics problems. Comput Mech 41:457–472

    Article  MATH  Google Scholar 

  53. Wang DD, Wu JC (2016) An efficient nesting sub-domain gradient smoothing integration algorithm with quadratic exactness for Galerkin meshfree methods. Comput Methods Appl Mech Eng 298:485–519

    Article  MathSciNet  MATH  Google Scholar 

  54. Ortizbernardin A, Köbrich P, Hale JS, Olatesanzana E, Bordas SPA, Natarajan S (2018) A volume-averaged nodal projection method for the Reissner–Mindlin plate model. Comput Methods Appl Mech Eng 341:827–850

    Article  MathSciNet  Google Scholar 

  55. Duan QL, Gao X, Wang BB, Li XK, Zhang HW (2014) A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistent formulation. Comput Methods Appl Mech Eng 280(10):84–116

    Article  MathSciNet  MATH  Google Scholar 

  56. Goh CM, Nielsen PMF, Nash MP (2017) A stabilised mixed meshfree method for incompressible media: application to linear elasticity and stokes flow. Comput Methods Appl Mech Eng 329:575–598

    Article  MathSciNet  Google Scholar 

  57. Ortiz-Bernardin A, Hale JS, Cyron CJ (2015) Volume-averaged nodal projection method for nearly-incompressible elasticity using meshfree and bubble basis functions. Comput Methods Appl Mech Eng 285:427–451

    Article  MathSciNet  MATH  Google Scholar 

  58. Ortiz-Bernardin A, Puso MA, Sukumar N (2015) Improved robustness for nearly-incompressible large deformation meshfree simulations on Delaunay tessellations. Comput Methods Appl Mech Eng 293:348–374

    Article  MathSciNet  MATH  Google Scholar 

  59. Kästner M, Hennig P, Linse T, Ulbricht V (2016) Phase-field modelling of damage and fracture—convergence and local mesh refinement. In: Naumenko K, Aßmus M (eds) Advanced methods of continuum mechanics for materials and structures. Advanced structured materials, vol 60. Springer, Singapore

  60. Zhang X, Vignes C, Sloan SW, Sheng D (2017) Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale. Comput Mech 59(5):1–16

    Article  MathSciNet  Google Scholar 

  61. Winkler B (2001) Traglastuntersuchungen von unbewehrten undbewehrten Betonstrukturen auf der Grundlage eines objektiven Werkstoffgesetzes fürBeton. Dissertation, University of Innsbruck, Austria

  62. Liu GW, Li QB, Zuo Z (2016) Implementation of a staggered algorithm for a phase field model in ABAQUS. Chin J Rock Mech Eng 35(5):1019–1030

    Google Scholar 

  63. Citarella R, Buchholz F-G (2008) Comparison of crack growth simulation by DBEM and FEM for SEN-specimens undergoing torsion or bending loading. Eng Fract Mech 75(3):489–509

    Article  Google Scholar 

  64. Cervera M, Barbat GB, Chiumenti M (2017) Finite element modeling of quasi-brittle cracks in 2D and 3D with enhanced strain accuracy. Comput Mech 4:1–30

    MathSciNet  MATH  Google Scholar 

  65. Benedetti L, Cervera M, Chiumenti M (2017) 3D numerical modeling of twisting cracks under bending and torsion of skew notched beams. Eng Fract Mech 176:235–256

    Article  Google Scholar 

Download references

Acknowledgements

The authors are pleased to acknowledge the support of this work by Science Challenge Project through contract/Grant Numbers TZ2018002 and JCKY2016212A502, the National Natural Science Foundation of China through contract/Grant Number 11672062, the Fundamental Research Funds for the Central Universities through contract/Grant Numbers DUT17LK18 and DUT18LK04, the open funds of the State Key Laboratory of Water Resources and Hydropower Engineering Science (Wuhan University) through contract/Grant Number 2015SGG03, the open funds of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology) through contract/Grant Number SKLGP2016K007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinglin Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Duan, Q. & Qiu, S. Adaptive consistent element-free Galerkin method for phase-field model of brittle fracture. Comput Mech 64, 741–767 (2019). https://doi.org/10.1007/s00466-019-01679-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-019-01679-2

Keywords

Navigation