Skip to main content
Log in

Stability analysis of rough surfaces in adhesive normal contact

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper deals with adhesive frictionless normal contact between one elastic flat solid and one stiff solid with rough surface. After computation of the equilibrium solution of the energy minimization principle and respecting the contact constraints, we aim at studying the stability of this equilibrium solution. This study of stability implies solving an eigenvalue problem with inequality constraints. To achieve this goal, we propose a proximal algorithm which enables qualifying the solution as stable or unstable and that gives the instability modes. This method has a low computational cost since no linear system inversion is required and is also suitable for parallel implementation. Illustrations are given for the Hertzian contact and for rough contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Carbone G, Mangialardi L (2004) Adhesion and friction of an elastic half-space in contact with a slightly wavy rigid surface. J Mech Phys Solids 52(6):1267–1287

    Article  Google Scholar 

  2. Carbone G, Mangialardi L (2008) Analysis of the adhesive contact of confined layers by using a Green’s function approach. J Mech Phys Solids 56(2):684–706

    Article  MathSciNet  Google Scholar 

  3. Carbone G, Scaraggi M, Tartaglino U (2009) Adhesive contact of rough surfaces: comparison between numerical calculations and analytical theories. Eur Phys J E 30:65–74

    Article  Google Scholar 

  4. Carpick RW, Ogletree DF, Salmeron M (1978) A general equation for fitting contact area and friction versus load measurements. J Colloid Interface Sci 211:395–400

    Article  Google Scholar 

  5. Chateau X, Nguyen Q (1991) Buckling of elastic structures in unilateral contact. Eur J Mech A Solids 10(1):71–89

    MathSciNet  MATH  Google Scholar 

  6. Combettes PL, Pesquet JC (2011) Proximal splitting methods in signal processing. In: Fixed-point algorithms for inverse problems in science and engineering. Springer, pp 185–212

  7. Condat L (2013) A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J Optim Theory Appl 158(2):460–479

    Article  MathSciNet  Google Scholar 

  8. da Costa AP, Martins J, Figueiredo I, Júdice J (2004) The directional instability problem in systems with frictional contacts. Comput Methods Appl Mech Eng 193(3):357–384

    Article  MathSciNet  Google Scholar 

  9. Da Costa AP, Figueiredo I, Júdice J, Martins J (2001) A complementarity eigenproblem in the stability analysis of finite dimensional elastic systems with frictional contact. In: Complementarity: applications, algorithms and extensions. Springer, pp 67–83

  10. Da Costa AP, Seeger A (2009) Numerical resolution of cone-constrained eigenvalue problems. Comput Appl Math 28(1):37–61

    MathSciNet  MATH  Google Scholar 

  11. Da Costa AP, Seeger A (2010) Cone-constrained eigenvalue problems: theory and algorithms. Comput Optim Appl 45(1):25–57

    Article  MathSciNet  Google Scholar 

  12. Derjaguin B, Muller V, Toporov Y (1975) Effect of contact deformations on the adhesion of particles. J Colloid Interface Sci 53(2):314–326

    Article  Google Scholar 

  13. Dong C, Bonnet M (2002) An integral formulation for steady-state elastoplastic contact over a coated half-plane. Comput Mech 28(2):105–121

    Article  Google Scholar 

  14. Glowinski R (2015) Variational methods for the numerical solution of nonlinear elliptic problems. SIAM, Philadelphia

    Book  Google Scholar 

  15. Hu YZ, Tonder K (1992) Simulation of 3-D random rough surface by 2-D digital filter and Fourier analysis. Int J Mach Tools Manuf 32:83–90

    Article  Google Scholar 

  16. Jacq C, Nelias D, Lormand G, Girodin D (2002) Development of a three-dimensional semi-analytical elastic–plastic contact code. J Tribol 124(4):653–667

    Article  Google Scholar 

  17. Jin F, Guo X (2013) Mechanics of axisymmetric adhesive contact of rough surfaces involving power-law graded materials. Int J Solids Struct 50(20):3375–3386

    Article  Google Scholar 

  18. Johnson K (1995) The adhesion of two elastic bodies with slightly wavy surfaces. Int J Solids Struct 32(3–4):423–430

    Article  Google Scholar 

  19. Johnson KL (1994) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  20. Júdice JJ, Sherali HD, Ribeiro IM (2007) The eigenvalue complementarity problem. Comput Optim Appl 37(2):139–156

    Article  MathSciNet  Google Scholar 

  21. Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc Lond A 324(1558):301–313

    Article  Google Scholar 

  22. Kesari H, Lew AJ (2011) Effective macroscopic adhesive contact behavior induced by small surface roughness. J Mech Phys Solids 59(12):2488–2510

    Article  MathSciNet  Google Scholar 

  23. Longuet-Higgins MS (1957) Statistical properties of an isotropic random surface. Philos Trans R Soc A 250(975):157–174

    Article  MathSciNet  Google Scholar 

  24. Maugis D (1992) Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J Colloid Interface Sci 150(1):243–269

    Article  Google Scholar 

  25. Maugis D, Barquins M (1983) Adhesive contact of sectionally smooth-ended punches on elastic half-spaces: theory and experiment. J Phys D Appl Phys 16(10):1843

    Article  Google Scholar 

  26. Meakin P (1998) Fractals, scaling and growth far from equilibrium. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  27. Müser MH (2014) Single-asperity contact mechanics with positive and negative work of adhesion: influence of finite-range interactions and a continuum description for the squeeze-out of wetting fluids. Beilstein J Nanotechnol 5:419–437

    Article  Google Scholar 

  28. Müser MH, Dapp WB (2015) The contact mechanics challenge: problem definition. arXiv preprint arXiv:1512.02403

  29. Nguyen QS (2000) Stability and nonlinear solid mechanics. Wiley, Hoboken

    Google Scholar 

  30. Papangelo A, Ciavarella M (2017) A Maugis Dugdale cohesive solution for adhesion of a surface with a dimple. J R Soc Interface 14(127):2016.0996

    Article  Google Scholar 

  31. Parikh N, Boyd S et al (2014) Proximal algorithms. Foundations and Trends\({\textregistered }\). Optimization 1(3):127–239

    Google Scholar 

  32. Pastewka L, Robbins MO (2014) Contact between rough surfaces and a criterion for macroscopic adhesion. Proc Natl Acad Sci 111(9):3298–3303

    Article  Google Scholar 

  33. Prokopovich P, Perni S (2010) Multiasperity contact adhesion model for universal asperity height and radius of curvature distributions. Langmuir 26(22):17028–17036

    Article  Google Scholar 

  34. Putignano C, Afferrante L, Carbone G, Demelio G (2012) A new efficient numerical method for contact mechanics of rough surfaces. Int J Solids Struct 42:338–343

    Article  Google Scholar 

  35. Queiroz M, Judice J, Humes C Jr (2004) The symmetric eigenvalue complementarity problem. Math Comput 73(248):1849–1863

    Article  MathSciNet  Google Scholar 

  36. Rey V, Anciaux G, Molinari JF (2017) Normal adhesive contact on rough surfaces: efficient algorithm for FFT-based BEM resolution. Comput Mech (accepted manuscript, 2017)

  37. Seeger A (1999) Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Algebra Appl 292(1–3):1–14

    Article  MathSciNet  Google Scholar 

  38. Stanley HM, Kato T (1997) An FFT-based method for rough surface contact. J Tribol 119:481–485

    Article  Google Scholar 

  39. Westergaard H (1937) Bearing pressures and cracks. J Appl Mech 6:49–53

    Google Scholar 

  40. Zhang W, Jin F, Zhang S, Guo X (2014) Adhesive contact on randomly rough surfaces based on the double-Hertz model. J Appl Mech 81(5):051,008

    Article  Google Scholar 

Download references

Acknowledgements

Support for V.R. from the EPFL Fellows fellowship program co-funded by Marie Skłodowska-Curie, Horizon 2020 Grant Agreement No. 665667 is gratefully acknowledged. The authors would like to thank Professor Jean-François Molinari and Guillaume Anciaux for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentine Rey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rey, V., Bleyer, J. Stability analysis of rough surfaces in adhesive normal contact. Comput Mech 62, 1155–1167 (2018). https://doi.org/10.1007/s00466-018-1556-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-018-1556-y

Keywords

Navigation