Skip to main content
Log in

Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Fourier-based homogenization schemes are useful to analyze heterogeneous microstructures represented by 2D or 3D image data. These iterative schemes involve discrete periodic convolutions with global ansatz functions (mostly fundamental solutions). The convolutions are efficiently computed using the fast Fourier transform. FANS operates on nodal variables on regular grids and converges to finite element solutions. Compared to established Fourier-based methods, the number of convolutions is reduced by FANS. Additionally, fast iterations are possible by assembling the stiffness matrix. Due to the related memory requirement, the method is best suited for medium-sized problems. A comparative study involving established Fourier-based homogenization schemes is conducted for a thermal benchmark problem with a closed-form solution. Detailed technical and algorithmic descriptions are given for all methods considered in the comparison. Furthermore, many numerical examples focusing on convergence properties for both thermal and mechanical problems, including also plasticity, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. The first node according to the node numbering of the reference element Z, i.e., if \(\underline{\alpha }\) is the zero vector.

  2. Here, the fact is considered that \(n_1, \ldots , n_d\) are even (cf. Sect. 2.2).

  3. The index \( i^*\in \left\{ 1,\ldots ,n\right\} \) depends on the exact choice of the array representation in Sect. 2.6 and is uniquely determined by the requirement \( \mathscr {F}\left( \left[ \,{\mathcal {I}}\,\right] \right) \equiv 1 \) in view of (20). The DFT is generally defined such that \( {\varvec{x}}^{\langle i^*\rangle } \) corresponds to the first entry (with respect to all dimensions) of the input array. E.g., in the array representation of our implementation, this first entry corresponds to the first corner of the RVE \( (i^*=c_1) \).

  4. The confinement to isotropic (local) constitutive relations is made for simplicity but does not reflect a restriction of the FANS scheme.

  5. An assumption of this kind corresponds to a necessary Dirichlet condition that renders the boundary value problem well-defined.

  6. With the confinement to the local constitutive behavior specified by Fourier’s law (22), the effective constitutive relation is expressed by \( \bar{{\varvec{q}}} = - \bar{{\varvec{\kappa }}} \bar{{\varvec{g}}} \). The global conductivity \( \bar{{\varvec{\kappa }}}\in Sym({\mathbb {R}}^d) \) is a positive semidefinite second-order tensor, which is in general anisotropic despite the fact that the local conductivity is assumed to be isotropic at all positions \( {\varvec{x}}\in \varOmega \). Obviously, this type of global constitutive behavior is independent of the macroscopic temperature \( \bar{\theta } \), which can therefore assume arbitrary values in the present case. However, \(\bar{\theta }\) needs to be imposed to the microscopic problem when temperature-dependent conductivities are incorporated.

  7. In Eq. (28) it is exploited that \( {\underline{\underline{{\mathcal {P}}}}}^\mathsf{T} \underline{f} = \underline{0} \) holds, which is due to the assumed absence of heat sources.

  8. The gradient stencil defined in (46) is newly introduced for thermal problems here. Its Fourier space representation in (47) is inspired by results in [36] but is oriented rather to standard FE expressions than to formulations proposed in the literature on Fourier-based homogenization.

  9. The FANS fundamental solution is always computed using full integration.

  10. By exploiting the superposition principle, the number of DFTs can be reduced from \( 2^dd \) to \( 2^d \).

  11. Aside from the characteristic length \(l_\mathrm{c}\), the Fourier space expression of the error measure from Sect. 2.4 in [31] has been corrected by the factor \( 2 \pi \sqrt{n} \) in Eq. (52). Without this correction, a fixed error tolerance would be hit earlier when the discretization is refined for a given problem.

  12. The closed-form solution field is not only divergence-free, but also curl-free within both phases. Hence it is only applicable to heat conduction problems if both phases are isotropic. Note that the necessity to numerically compute the Jacobian elliptic delta function at each discretization point makes the closed-form solution computationally more demanding than FANS. To facilitate reproduction of our results, we mention a minor error in [32]: Both denominators in Eq. (3.5) must be replaced by their square roots.

  13. A violation of the HS bounds would of course not contradict the validity of the numerical results, but would indicate that the considered medium has anisotropy which is not negligible.

  14. Otherwise they loose their sparsity and, thus, efficiency.

References

  1. Arbenz P, van Lenthe GH, Mennel U, Müller R, Sala M (2008) A scalable multi-level preconditioner for matrix-free \(\upmu \)-finite element analysis of human bone structures. Int J Numer Methods Eng 73(7):927–947

    Article  MathSciNet  MATH  Google Scholar 

  2. Bornert M, Bretheau T, Gilormini P, Jeulin D, Michel J-C, Moulinec H, Suquet P, Zaoui A (2001) Homogénéisation en mécanique des matériaux 1. Hermes Science Publications, Cardiff

    Google Scholar 

  3. Brisard S (2017) Reconstructing displacements from the solution to the periodic Lippmann–Schwinger equation discretized on a uniform grid. Int J Numer Methods Eng 109(4):459–486

    Article  MathSciNet  Google Scholar 

  4. Brisard S, Dormieux L (2010) FFT-based methods for the mechanics of composites: a general variational framework. Comput Mater Sci 49(3):663–671

    Article  Google Scholar 

  5. Brisard S, Dormieux L (2012) Combining Galerkin approximation techniques with the principle of Hashin and Shtrikman to derive a new FFT-based numerical method for the homogenization of composites. Comput Methods Appl Mech Eng 217–220:197–212

    Article  MathSciNet  MATH  Google Scholar 

  6. Cooley JW, Tukey JW (1965) An algorithm for the machine calculation of complex Fourier series. Math Comput 19:297–301

    Article  MathSciNet  MATH  Google Scholar 

  7. Dumontet H (1983) Homogénéisation par développements en séries de Fourier. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 296:1625–1628

    MathSciNet  MATH  Google Scholar 

  8. Dvorak G J (1992) Transformation field analysis of inelastic composite materials. Proc Math Phys Sci 437:311–327

    Article  MathSciNet  MATH  Google Scholar 

  9. Dvorak GJ, Benveniste Y (1992) On transformation strains and uniform fields in multiphase elastic media. Proc R Soc Lond A Math Phys Eng Sci 437:291–310

    Article  MathSciNet  MATH  Google Scholar 

  10. Eshelby J D (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc Lond A 241:376–396

    Article  MathSciNet  MATH  Google Scholar 

  11. Feyel F, Chaboche J-L (2000) \(\text{ FE }^{2}\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330

    Article  MATH  Google Scholar 

  12. Frigo M, Johnson S G (2005) The design and implementation of FFTW3. Proc IEEE 93(2):216–231 Special issue on “Program Generation, Optimization, and Platform Adaptation”

    Article  Google Scholar 

  13. Fritzen F, Böhlke T (2011) Nonuniform transformation field analysis of materials with morphological anisotropy. Compos Sci Technol 71(4):433–442

    Article  Google Scholar 

  14. Fritzen F, Leuschner M (2013) Reduced basis hybrid computational homogenization based on a mixed incremental formulation. Comput Methods Appl Mech Eng 260:143–154

    Article  MathSciNet  MATH  Google Scholar 

  15. Fritzen F, Leuschner M (2015) Nonlinear reduced order homogenization of materials including cohesive interfaces. Comput Mech 56(1):131–151

    Article  MathSciNet  MATH  Google Scholar 

  16. Fritzen F, Hodapp M, Leuschner M (2014) GPU accelerated computational homogenization based on a variational approach in a reduced basis framework. Comput Methods Appl Mech Eng 278:186–217

    Article  MathSciNet  Google Scholar 

  17. Gélébart L, Mondon-Cancel R (2013) Non-linear extension of FFT-based methods accelerated by conjugate gradients to evaluate the mechanical behavior of composite materials. Comput Mater Sci 77:430–439

    Article  Google Scholar 

  18. Hashin Z, Shtrikman S (1963) A variational approach to the theory of the elastic behaviour of multiphase materials. J Mech Phys Solids 11(2):127–140

    Article  MathSciNet  MATH  Google Scholar 

  19. Kabel M, Böhlke T, Schneider M (2014) Efficient fixed point and Newton–Krylov solvers for FFT-based homogenization of elasticity at large deformations. Comput Mech 54(6):1497–1514

    Article  MathSciNet  MATH  Google Scholar 

  20. Kochmann, J., Wulfinghoff, S., Ehle, L., Mayer, J., Svendsen, B., Reese, S (2017) Efficient and accurate two-scale FE-FFT-based prediction of the effective material behavior of elasto-viscoplastic polycrystals. Comput Mech. https://doi.org/10.1007/s00466-017-1476-2

  21. Leuschner M, Fritzen F (2017) Reduced order homogenization for viscoplastic composite materials including dissipative imperfect interfaces. Mech Mater 104:121–138

    Article  Google Scholar 

  22. Michel J-C, Suquet P (2003) Nonuniform transformation field analysis. Int J Solids Struct 40(25):6937–6955 Special issue in Honor of George J. Dvorak

    Article  MathSciNet  MATH  Google Scholar 

  23. Michel J-C, Suquet P (2004) Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Comput Methods Appl Mech Eng 193(48–51):5477–5502 Advances in Computational Plasticity

    Article  MathSciNet  MATH  Google Scholar 

  24. Michel J-C, Suquet P (2016a) A model-reduction approach to the micromechanical analysis of polycrystalline materials. Comput Mech 57(3):483–508

    Article  MathSciNet  MATH  Google Scholar 

  25. Michel J-C, Suquet P (2016b) A model-reduction approach in micromechanics of materials preserving the variational structure of constitutive relations. J Mech Phys Solids 90:254–285

    Article  MathSciNet  Google Scholar 

  26. Mishra N, Vondřejc J, Zeman J (2016) A comparative study on low-memory iterative solvers for FFT-based homogenization of periodic media. J Comput Phys 321:151–168

    Article  MathSciNet  MATH  Google Scholar 

  27. Moakher M (2006) On the averaging of symmetric positive-definite tensors. J Elast 82(3):273–296

    Article  MathSciNet  MATH  Google Scholar 

  28. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21(5):571–574

    Article  Google Scholar 

  29. Moulinec H, Suquet P (1994) A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 318(11):1417–1423

    MATH  Google Scholar 

  30. Moulinec H, Suquet P (1995) A FFT-based numerical method for computing the mechanical properties of composites from images of their microstructures. In: Pyrz R (ed) IUTAM symposium on microstructure-property interactions in composite materials, vol 37. Solid mechanics and its applications. Springer, Springer, pp 235–246

    Chapter  Google Scholar 

  31. Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157(1–2):69–94

    Article  MathSciNet  MATH  Google Scholar 

  32. Obnosov YV (1999) Periodic heterogeneous structures: New explicit solutions and effective characteristics of refraction of an imposed field. SIAM J Appl Math 59(4):1267–1287

    Article  MathSciNet  MATH  Google Scholar 

  33. Ponte P (1991) Castañeda. The effective mechanical properties of nonlinear isotropic composites. J Mech Phys Solids 39(1):45–71

    Article  MathSciNet  MATH  Google Scholar 

  34. Reuss A (1929) Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM J Appl Math Mech/ Zeitschrift für Angewandte Mathematik und Mechanik 9(1):49–58

    Article  MATH  Google Scholar 

  35. Schneider M, Ospald F, Kabel M (2016) Computational homogenization of elasticity on a staggered grid. Int J Numer Methods Eng 105(9):693–720

    Article  MathSciNet  Google Scholar 

  36. Schneider M, Merkert D, Kabel M, Schneider M, Merkert D, Kabel M (2017) FFT-based homogenization for microstructures discretized by linear hexahedral elements. Int J Numer Methods Eng 109(10):1461–1489 nme.5336

    Article  MathSciNet  MATH  Google Scholar 

  37. Suquet P (1990) Une méthode simplifiée pour le calcul des propriétés élastiques de matériaux hétérogènes à structure périodique. Comptes rendus de l’Académie des sciences. Série II, Mécanique, physique, chimie, astronomie 311:769–774

    MATH  Google Scholar 

  38. Talbot DRS, Willis JR (1985) Variational principles for inhomogeneous non-linear media. IMA J Appl Math 35(1):39–54

    Article  MathSciNet  MATH  Google Scholar 

  39. Terada K, Miura T, Kikuchi N (1997) Digital image-based modeling applied to the homogenization analysis of composite materials. Comput Mech 20(4):331–346

    Article  MATH  Google Scholar 

  40. Voigt W (1910) Lehrbuch der Kristallphysik. Teubner, Berlin

    MATH  Google Scholar 

  41. Vondřejc J, Zeman J, Marek I (2014) An FFT-based Galerkin method for homogenization of periodic media. Comput Math Appl 68(3):156–173

    Article  MathSciNet  MATH  Google Scholar 

  42. Willot F (2015) Fourier-based schemes for computing the mechanical response of composites with accurate local fields. Comptes Rendus Mécanique 343(3):232–245

    Article  MathSciNet  Google Scholar 

  43. Willot F, Abdallah B, Pellegrini Y-P (2014) Fourier-based schemes with modified Green operator for computing the electrical response of heterogeneous media with accurate local fields. Int J Numer Meth Eng 98(7):518–533

    Article  MathSciNet  MATH  Google Scholar 

  44. Yvonnet J (2012) A fast method for solving microstructural problems defined by digital images: a space Lippmann–Schwinger scheme. Int J Numer Meth Eng 92(2):178–205

    Article  MathSciNet  MATH  Google Scholar 

  45. Zeman J, Vondřejc J, Novák J, Marek I (2010) Accelerating a FFT-based solver for numerical homogenization of periodic media by conjugate gradients. J Comput Phys 229(21):8065–8071

    Article  MathSciNet  MATH  Google Scholar 

  46. Zeman J, de Geus T W J, Vondřejc J, Peerlings R H J, Geers M G D (2017) A finite element perspective on nonlinear FFT-based micromechanical simulations. Int J Numer Methods Eng 111(10):903–926

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Funding by the German Research Foundation (DFG) via grant FR-2702/3 and within the Emmy Noether Programme of the DFG via grant FR-2702/6 is highly acknowledged. The stimulating discussions within the Cluster of Excellence Simulation Technology (funded by DFG in the scope of the excellence initiative under grant EXC 310) at the University of Stuttgart are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Fritzen.

Appendices

Appendix A: Memory requirement

Taking into account symmetry, the number of nonzero entries that has to be stored for the periodized stiffness matrix \( \underline{\underline{{K^\mathrm{f}}}} \), defined for thermal problems in (28), is

$$\begin{aligned} \frac{3^d {\mathcal {D}}+ 1}{2}{\mathcal {D}}n, \end{aligned}$$
(A.1)

where n is the number of pixels/voxels and \( {\mathcal {D}} \) denotes the number of degrees of freedom per node, i.e., \( {\mathcal {D}}=1 \) for thermal problems and \( {\mathcal {D}}=d \) for general (non-) linear mechanical problems. When the storage demand is reduced by a matrix-free element-by-element (EBE) approach for thermal/mechanical linear problems with isotropic constituents, one/two stored scalar variables per element are sufficient. For more general problems, the EBE approach becomes less efficient in terms of memory requirement, and for nonlinear problems its profitability depends crucially on whether or not reduced integration can be used.

Appendix B: Construction of fundamental solutions for the SLS method

Algorithm 7 describes how the fields \( {\varvec{\psi }}^{(1)}, \ldots , {\varvec{\psi }}^{(d)} \), which constitute the fundamental solution for the original SLS, are constructed. For FA-SLS, these are re-organized in expanded fields \( {\varvec{\Psi }}^{(1)}, \ldots , {\varvec{\Psi }}^{(d)} \) that are defined on the full set of element centers \( {\mathcal {X}} \). To construct \( {\varvec{\Psi }}^{(j)} \), the field \( {\varvec{\psi }}^{(j)} \) is positioned in \( {\mathcal {X}} \) such that its central element is placed at the position \( {\varvec{x}}^{\left\{ i^*\right\} } \) characterizing the identity with respect to convolution (cf. Sect. 2.8), whereby periodic continuations across the boundaries are taken into account. Afterwards, the remainder of \( {\mathcal {X}} \) is padded with zeros. The procedure is illustrated for the two-dimensional case in Fig. 23.

figure g
Fig. 23
figure 23

Fundamental solution of the SLS method for two-dimensional heat conduction. Left: Components of the original field \( {\varvec{\psi }}^{(1)} \) on \( 15 \times 15 \) elements. Right: Components of the expanded field \( {\varvec{\Psi }}^{(1)} \) defined on the full domain of the RVE. Here, the position \( {\varvec{x}}^{\left\{ i^*\right\} } \) of the single nonzero entry of the identity with respect to convolution is located at the bottom left corner of the RVE

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leuschner, M., Fritzen, F. Fourier-Accelerated Nodal Solvers (FANS) for homogenization problems. Comput Mech 62, 359–392 (2018). https://doi.org/10.1007/s00466-017-1501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1501-5

Keywords

Navigation