Skip to main content
Log in

A density-adaptive SPH method with kernel gradient correction for modeling explosive welding

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

Explosive welding involves processes like the detonation of explosive, impact of metal structures and strong fluid–structure interaction, while the whole process of explosive welding has not been well modeled before. In this paper, a novel smoothed particle hydrodynamics (SPH) model is developed to simulate explosive welding. In the SPH model, a kernel gradient correction algorithm is used to achieve better computational accuracy. A density adapting technique which can effectively treat large density ratio is also proposed. The developed SPH model is firstly validated by simulating a benchmark problem of one-dimensional TNT detonation and an impact welding problem. The SPH model is then successfully applied to simulate the whole process of explosive welding. It is demonstrated that the presented SPH method can capture typical physics in explosive welding including explosion wave, welding surface morphology, jet flow and acceleration of the flyer plate. The welding angle obtained from the SPH simulation agrees well with that from a kinematic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Cutler D (2006) What you can do with explosion welding. Weld J 5(4):177–199

    Google Scholar 

  2. Grignon F, Benson D, Vecchio KS, Meyers MA (2004) Explosive welding of aluminum to aluminum: analysis, computations and experiments. Int J Impact Eng 30:1333–1351

    Article  Google Scholar 

  3. Kacar R, Acarer M (2004) An investigation on the explosive cladding of 316L stainless steel–din-P355GH steel. J Mater Process Technol 152(1):91–96

    Article  Google Scholar 

  4. Kahraman N, Gülenç B, Findik F (2005) Joining of titanium/stainless steel by explosive welding and effect on interface. J Mater Process Technol 169(2):127–133

    Article  Google Scholar 

  5. Bahrani AS, Crossland B (1967) The mechanics of wave formation in explosive welding. Proc R Soc Lond A 296:123–136

    Article  Google Scholar 

  6. Stanyukovich K (2002) Explosion physics, 3rd edn. Nauka, Moscow

    Google Scholar 

  7. Salem SAL, Lazari LG, Al-Hassani STS (1984) Explosive welding of flat plates in free flight. Int J Impact Eng 2(1):85–101

    Article  Google Scholar 

  8. Birnbaum NK, Cowler MS, Itoh M, Katayama M, Obata H (1987) AUTODYN—an interactive non-linear dynamic analysis program for microcomputers through supercomputers. In: Ninth international conference on structural mechanics in reactor technology, Lausanne, Switzerland

  9. Hageman LJ, Walsh JM, Hageman LJ, Walsh JM (1971) HELP, a multi-material Eulerian program for compressible fluid and elastic–plastic flows in two space dimensions and time, vol 1. System, Science and Software Inc, La Jolla

    Google Scholar 

  10. Hallquist JO (1986) DYNA3D user’s manual (nonlinear dynamic analysis of structures in three dimensions). Lawrence Livermore National Laboratory, Livermore

    Google Scholar 

  11. Mousavi AAA, Burley SJ, Al-Hassani STS (2004) Simulation of explosive welding using the Williamsburg equation of state to model low detonation velocity explosives. Int J Impact Eng 31(6):719–734

    Article  Google Scholar 

  12. Mousavi AAA, Al-Hassani STS (2008) Finite element simulation of explosively-driven plate impact with application to explosive welding. Mater Des 29(1):1–19

    Article  Google Scholar 

  13. Sui GF, Li JS, Sun F, Ma B, Li HW (2011) 3D finite element simulation of explosive welding of three-layer plates. Sci China Phys Mech Astron 54(5):890–896

    Article  Google Scholar 

  14. Zhang X, Chen Z, Liu Y (2016) The material point method—a continuum-based particle method for extreme loading cases. Elsevier, Amsterdam

    Google Scholar 

  15. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nuclear Sci Eng 123(3):421–434

    Article  Google Scholar 

  16. Li SF, Liu WK (2002) Meshfree and particle methods and their applications. Appl Mech Rev 55(1):1–34

    Article  Google Scholar 

  17. Liu GR (2003) Mesh free methods moving beyond finite element method. Crc Press, Boca Raton

    MATH  Google Scholar 

  18. Liu WK, Chen Y, Jun S, Chen JS, Belytschko T, Pan C, Uras RA, Chang CT (1996) Overview and applications of the reproducing kernel particle methods. Arch Comput Methods Eng 3(1):3–80

    Article  MathSciNet  Google Scholar 

  19. Lian YP, Zhang X, Zhou X, Ma S, Zhao YL (2011) Numerical simulation of explosively driven metal by material point method. Int J Impact Eng 38(4):238–246

    Article  Google Scholar 

  20. Wang Y, Beom HG, Sun M, Lin S (2011) Numerical simulation of explosive welding using the material point method. Int J Impact Eng 38(1):51–60

    Article  Google Scholar 

  21. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  MATH  Google Scholar 

  22. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore

    Book  MATH  Google Scholar 

  23. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  24. Feng DL, Liu MB, Li HQ, Liu GR (2013) Smoothed particle hydrodynamics modeling of linear shaped charge with jet formation and penetration effects. Comput Fluids 86(7):77–85

    Article  MATH  Google Scholar 

  25. Liu MB, Liu GR, Lam KY (2006) Adaptive smoothed particle hydrodynamics for high strain hydrodynamics with material strength. Shock Waves 15(1):21–29

    Article  MATH  Google Scholar 

  26. Liu MB, Liu GR, Lam KY, Zong Z (2003) Smoothed particle hydrodynamics for numerical simulation of underwater explosion. Comput Mech 30(2):106–118

    Article  MATH  Google Scholar 

  27. Liu MB, Liu GR, Zong Z, Lam KY (2003) Computer simulation of high explosive explosion using smoothed particle hydrodynamics methodology. Comput Fluids 32(3):305–322

    Article  MATH  Google Scholar 

  28. Randles PW, Libersky LD (1996) Smoothed particle hydrodynamics: some recent improvements and applications. Comput Methods Appl Mech Eng 139:375–408

    Article  MATH  MathSciNet  Google Scholar 

  29. Swegle JW, Attaway SW (1995) On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations. Comput Mech 17(3):151–168

    Article  MATH  Google Scholar 

  30. Li XJ, Mo F, Wang XH, Wang B, Liu KX (2012) Numerical study on mechanism of explosive welding. Sci Technol Weld Join 17(1):36–41

    Article  Google Scholar 

  31. Nassiri A, Kinsey B (2016) Numerical studies on high-velocity impact welding: smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian–Eulerian (ALE). J Manuf Process 24

  32. Shao JR, Li HQ, Liu GR, Liu MB (2012) An improved SPH method for modeling liquid sloshing dynamics. Comput Struct 100–101(6):18–26

    Article  Google Scholar 

  33. Liu MB, Li SM (2016) On the modeling of viscous incompressible flows with smoothed particle hydrodynamics. J Hydrodyn 28(5):731–745

    Article  Google Scholar 

  34. Zukas JA (1990) High velocity impact dynamics. Wiley, London

    Google Scholar 

  35. Lee EL, Hornig HC, Kury JW (1967) Adiabatic expansion of high explosive detonation products. Livermore Lawrence Radiation Lab, California University, Livermore

    Google Scholar 

  36. Johnson GR, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of seventh international symposium on ballistics, The Hague, Netherlands

  37. Zhou CE, Liu GR, Lou KY (2007) Three-dimensional penetration simulation using smoothed particle hydrodynamics. Int J Comput Methods 4:671–691

    Article  MATH  MathSciNet  Google Scholar 

  38. Liu MB, Liu GR (2006) Restoring particle consistency in smoothed particle hydrodynamics. Appl Numer Math 56(1):19–36

    Article  MATH  MathSciNet  Google Scholar 

  39. Ren B, Fan H, Bergel GL, Regueiro RA, Lai X, Li S (2015) A peridynamics–SPH coupling approach to simulate soil fragmentation induced by shock waves. Comput Mech 55(2):287–302

    Article  MATH  MathSciNet  Google Scholar 

  40. Chen JK, Beraun JE (2000) A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems. Comput Methods Appl Mech Eng 190(1–2):225–239

    Article  MATH  Google Scholar 

  41. Liu MB, Xie WP, Liu GR (2005) Modeling incompressible flows using a finite particle method. Appl Math Model 29(12):1252–1270

    Article  MATH  Google Scholar 

  42. Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227(1):264–278

    Article  MATH  Google Scholar 

  43. Zhang MY, Deng XL (2015) A sharp interface method for SPH. J Comput Phys 302:469–484

    Article  MATH  MathSciNet  Google Scholar 

  44. Colagrossi A (2003) A meshless Lagrangian method for free-surface and interface flows with fragmentation. Universita di Roma, La Sapienza

    Google Scholar 

  45. Monaghan JJ (2005) Smoothed particle hydrodynamics. World Scientific, Singapore

    MATH  Google Scholar 

  46. Benz W (1990) Smooth particle hydrodynamics—a review. In: Buchler JR (ed) Numerical modelling of nonlinear stellar pulsations: problems and prospects. Kluwer Academic, Boston

  47. Mader CL (1979) Numerical modeling of detonation. University of California Press, Berkeley

    MATH  Google Scholar 

  48. Carpenter SH, Wittman RH (1967) Relationships of explosive welding parameters to material properties and geometry factors. University of Denver, Denver

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China (Grant Nos. U1530110 and 11172306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M.B., Zhang, Z.L. & Feng, D.L. A density-adaptive SPH method with kernel gradient correction for modeling explosive welding. Comput Mech 60, 513–529 (2017). https://doi.org/10.1007/s00466-017-1420-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-017-1420-5

Keywords

Navigation