Skip to main content
Log in

Frictional mortar contact for finite deformation problems with synthetic contact kinematics

Comparison of averaged non-mortar side and non continuous mortar side normal field

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In this paper we present a mortar based method, for frictional two dimensional contact problems. It is based on the work by Tur et al. (Comput Methods Appl Mech Eng 198(37–40):2860–2873, 2009) and uses the same concentrated integration scheme as well as a non regularized tangential contact formulation based on Lagrange multipliers only. We abstract the contact kinematics to a rather synthetic formulation. Therefore we are able to use two different methods of defining the normal field on the discretized surface normal: The popular method of averaged non-mortar side normal and the rather simple non continuous mortar side normal field. The problem is solved with a fixed point Newton–Raphson procedure and for both normal fields the full linearizations are derived. With numerical examples we show the performance of the more concise formulation of the non averaged non continuous mortar side normal field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archer G, Fenves G, Thewalt C (1999) A new object-oriented finite element analysis program architecture. Comput Struct 70: 63–75

    Article  MATH  Google Scholar 

  2. Benson D, Hallquist J (1990) A singl durface contact algorithm for postbucklung. Comput Methods Appl Mech Eng 78: 141–163

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonet J, Wood RD (1997) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  4. Fischer KA, Wriggers P (2005) Frictionless 2d contact formulations for finite deformations based on the mortar method. Comput Mech 36: 226–244

    Article  MATH  Google Scholar 

  5. Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195: 5020–5036

    Article  MathSciNet  MATH  Google Scholar 

  6. Flemisch B, Puso MA, Wohlmuth BI (2005) A new dual mortar method for curved interfaces: 2d elasticity. Int J Numer Methods Eng 63: 813–832

    Article  MathSciNet  MATH  Google Scholar 

  7. Geuzaine C, Remacle J (2009) Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities. Int J Numer Methods Eng 79(11): 1309–1331

    Article  MathSciNet  MATH  Google Scholar 

  8. Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth newton method with consistent linearization. Int J Numer Methods Eng 84(5): 543–571

    MathSciNet  MATH  Google Scholar 

  9. Hallquist J, Goudreau G, DJ B (1985) Sliding interfaces with contact-impact in large-scale Lagrangian computations. Comput Methods Appl Mech Eng 51: 107137

    Article  Google Scholar 

  10. Hammer ME (2006) SOOFEA—software for object oriented finite element analysis http://soofea.fest.tugraz.at

  11. Hartmann S, Ramm E (2008) A mortar based contact formulation for non-linear dynamics using dual lagrange multipliers. Finite Elem Anal Des 44: 245–258

    Article  MathSciNet  Google Scholar 

  12. Hild P (2000) Numerical implementation of two nonconforming finite element methods for unilateral contact. Comp Methods Appl Mech Eng 184: 99–123

    Article  MathSciNet  MATH  Google Scholar 

  13. Hüeber S, Wolmuth B (2005) A primaldual active set strategy for non-linear multibody contact problems. Comp Methods Appl Mech Eng 194: 3147–3166

    Article  MATH  Google Scholar 

  14. Hüeber S, Wolmuth B (2009) Thermo-mechanical contact problems on non-matching meshes. Comput Methods Appl Mech Eng 198: 1338–1350

    Article  MATH  Google Scholar 

  15. Konyukhov A, Schweizerhof K (2006) A special focus on 2d formulations for contact problems using a covariant description. Int J Numer Methods Eng 66: 1432–1465

    Article  MathSciNet  MATH  Google Scholar 

  16. Laursen T (2002) Computational contact and impact mechanics. Springer, Berlin

    MATH  Google Scholar 

  17. Laursen TA, Simo JC (1993) A continuum-based finite element formulation for the implicit solution of multibody. Large deformation-frictional contact problems. Int J Numer Methods Eng 36(20): 3451–3485

    Article  MathSciNet  MATH  Google Scholar 

  18. McDevitt TW, Laursen TA (2000) A mortar-finite element formulation for frictional contact problems. Int J Numer Methods Eng 48: 1525–1547

    Article  MathSciNet  MATH  Google Scholar 

  19. Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primaldual active set strategy. Int J Numer Methods Eng 79(11): 1354–1391

    Article  MathSciNet  MATH  Google Scholar 

  20. Puso MA (2004) A 3d mortar method for solid mechanics. Int J Numer Methods Eng 59: 315–336

    Article  MATH  Google Scholar 

  21. Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6–8): 601–629

    Article  MathSciNet  MATH  Google Scholar 

  22. Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45–47): 4891–4913

    Article  MathSciNet  MATH  Google Scholar 

  23. Schweizerhof K, Konyukhov A (2005) Covariant description for frictional contact problems. Comput Mech 35: 190–213

    Article  MATH  Google Scholar 

  24. Tur M, Fuenmayor F, Wriggers P (2009) A mortar-based frictional contact formulation for large deformations using lagrange multipliers. Comput Methods Appl Mech Eng 198(37–40): 2860–2873

    Article  MathSciNet  MATH  Google Scholar 

  25. Willner K (2003) Kontinuums- und Kontaktmechanik. Springer, Berlin

    Book  Google Scholar 

  26. Wohlmuth BI (2000) A mortar finite element method using dual spaces for the lagrange multiplier. SIAM J Numer Anal 38: 9891012

    Article  MathSciNet  Google Scholar 

  27. Wolmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38: 989–1012

    Article  MathSciNet  Google Scholar 

  28. Wriggers P (2007) Computational contact mechanics. Springer, Heidelberg

    Book  Google Scholar 

  29. Wriggers P (2009) Nonlinear finite element methods. Springer, Berlin

    Google Scholar 

  30. Yang B, Laursen TA (2008) A contact searching algorithm including bounding volume trees applied to finite sliding mortar formulations. Comput Mech 41: 189–205

    Article  MathSciNet  MATH  Google Scholar 

  31. Yang B, Laursen TA (2008) A large deformation mortar formulation of self contact with finite sliding. Comput Methods Appl Mech Eng 197: 756–772

    Article  MathSciNet  MATH  Google Scholar 

  32. Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9): 1183–1225

    Article  MathSciNet  MATH  Google Scholar 

  33. Zavarise G, Lorenzis LD (2009) The node-to-segment algorithm for 2d frictionless contact: classical formulation and special cases. Comput Methods Appl Mech Eng 198: 3428–3451

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Hammer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, M.E. Frictional mortar contact for finite deformation problems with synthetic contact kinematics. Comput Mech 51, 975–998 (2013). https://doi.org/10.1007/s00466-012-0780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-012-0780-0

Keywords

Navigation