Skip to main content

Advertisement

Log in

An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress fields in finite element analyses

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

In the context of global/goal-oriented error estimation applied to computational mechanics, the need to obtain reliable and guaranteed bounds on the discretization error has motivated the use of residual error estimators. These estimators require the construction of admissible stress fields verifying the equilibrium exactly. This article focuses on a recent method, based on a flux-equilibration procedure and called the element equilibration + star-patch technique (EESPT), that provides for such stress fields. The standard version relies on a strong prolongation condition in order to calculate equilibrated tractions along finite element boundaries. Here, we propose an enhanced version, which is based on a weak prolongation condition resulting in a local minimization of the complementary energy and leads to optimal tractions in selected regions. Geometric and error estimate criteria are introduced to select the relevant zones for optimizing the tractions. We demonstrate how this optimization procedure is important and relevant to produce sharper estimators at affordable computational cost, especially when the error estimate criterion is used. Two- and three-dimensional numerical experiments demonstrate the efficiency of the improved technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ainsworth M, Oden J (1993) A priori error estimators for second-order elliptic systems. Part 2: An optimal order process for calculating self-equilibrating fluxes. Comput Math Appl 26: 75–87

    Article  MathSciNet  MATH  Google Scholar 

  2. Babuška I, Rheinboldt W (1978) A posteriori error estimates for the finite element method. Int J Numer Meth Eng 12: 1597

    Article  MATH  Google Scholar 

  3. Babuška I, Strouboulis T (2001) The finite element method and its reliability. Oxford University Press, Oxford

    Google Scholar 

  4. Babuška I, Strouboulis T, Upadhyay C, Gangaraj S, Copps K (1994) Validation of a posteriori error estimators by numerical approach. Int J Numer Methods Eng 37: 1073–1123

    Article  MATH  Google Scholar 

  5. Becker R, Rannacher R (2001) An optimal control approach to a posteriori error estimation in finite element methods. In: Isereles A (eds) Acta Numerica, vol 10. Cambridge University Press, Cambridge, pp 1–102

    Google Scholar 

  6. Carstensen C, Funken S (2000) Fully reliable localized error control in the fem. SIAM J Sci Comput 21(4): 1465–1484

    Article  MathSciNet  MATH  Google Scholar 

  7. Chamoin L, Ladevèze P (2007) Bounds on history-dependent or independent local quantities in viscoelasticity problems solved by approximate methods. Int J Numer Methods Eng 71(12): 1387–1411

    Article  MATH  Google Scholar 

  8. Chamoin L, Ladevèze P (2008) A non-intrusive method for the calculation of strict and efficient bounds of calculated outputs of interest in linear viscoelasticity problems. Comput Methods Appl Mech Eng 197(9–12): 994–1014

    Article  MATH  Google Scholar 

  9. Cirak F, Ramm E (1998) A posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem. Comput Methods Appl Mech Eng 156: 351–362

    Article  MathSciNet  MATH  Google Scholar 

  10. Coorevits P, Dumeau J, Pelle J (1999) Control of analyses with isoparametric elements in both 2d and 3d. Int J Numer Methods Eng 46: 157–176

    Article  MATH  Google Scholar 

  11. Cottereau R, Díez P, Huerta A (2009) Strict error bounds for linear solid mechanics problems using a subdomain-based flux-free method. Comput Mech 44(4): 533–547

    Article  MathSciNet  MATH  Google Scholar 

  12. de Almeida JM, Maunder E (2009) Recovery of equilibrium on star patches using a partition of unity technique. Int J Numer Meth Eng 79(12): 1493–1516

    Article  MATH  Google Scholar 

  13. Florentin E, Gallimard L, Pelle J (2002) Evaluation of the local quality of stresses in 3d finite element analysis. Comput Methods Appl Mech Eng 191: 4441–4457

    Article  MATH  Google Scholar 

  14. Ladevèze P (1975) Comparaison de modèles de milieux continus. Ph.D. thesis, Universite P. et M. Curie (in French)

  15. Ladevèze (2008) Strict upper error bounds on computed outputs of interest in computational structural mechanics. Comput Mech 42(2):271–286. http://dx.doi.org/10.1007/s00466-007-0201-y

    Google Scholar 

  16. Ladevèze P, Chamoin L (2010) Calculation of strict error bounds for finite element approximations of non-linear pointwise quantities of interest. Int J Numer Methods Eng 84(13): 1638–1664

    Article  MATH  Google Scholar 

  17. Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and application. SIAM J Numer Anal 20(3): 485–509

    Article  MathSciNet  MATH  Google Scholar 

  18. Ladevèze P, Maunder E (1996) A general method for recovering equilibrating element tractions. Comput Methods Appl Mech Eng 137: 111–151

    Article  MATH  Google Scholar 

  19. Ladevèze P, Pelle J (2004) Mastering calculations in linear and nonlinear mechanics. Springer, New York

    Google Scholar 

  20. Ladevèze P, Rougeot P (1997) New advances on a posteriori error on constitutive relation in finite element analysis. Comput Methods Appl Mech Eng 150: 239–249

    Article  MATH  Google Scholar 

  21. Ladevèze P, Marin P, Pelle J, Gastine J (1992) Accuracy and optimal meshes in finite element computation for nearly incompressible materials. Comput Methods Appl Mech Eng 94(3): 303–315

    Article  MATH  Google Scholar 

  22. Ladevèze P, Rougeot P, Blanchard P, Moreau J (1999) Local error estimators for finite element linear analysis. Comput Methods Appl Mech Eng 176(1–4): 231–246

    Article  MATH  Google Scholar 

  23. Ladevèze P, Chamoin L, Florentin E (2010) A new non-intrusive technique for the construction of admissible stress fields in model verification. Comput Methods Appl Mech Eng 199:766–777. doi:10.1016/j.cma.2009.11.007. http://www.sciencedirect.com/science/article/B6V29-4XPYXDV-1/2/174b4df4415326ba82032f6679df331479df3314

  24. Machiels L, Maday Y, Patera A (2000) A flux-free nodal Neumann subproblem approach to output bounds for partial differential equations. Comptes Rendus Académie des Sciences - Mécanique, Paris 2000 330(1): 249–254

    Article  MathSciNet  MATH  Google Scholar 

  25. Morin P, Nochetto R, Siebert K (2003) Local problems on stars: a posteriori error estimators, convergence, and performance. Math Comput 72(243): 1067–1097

    MathSciNet  MATH  Google Scholar 

  26. Panetier J, Ladevèze P, Chamoin L (2010) Strict and effective bounds in goal-oriented error estimation applied to fracture mechanics problems solved with the xfem. Int J Numer Methods Eng 81(6): 671–700

    MATH  Google Scholar 

  27. Paraschivoiu M, Peraire J, Patera A (1997) A posteriori finite element bounds for linear functional outputs of elliptic partial differential equations. Comput Methods Appl Mech Eng 150: 351–362

    Article  MathSciNet  Google Scholar 

  28. Parés N, Díez P, Huerta A (2006) Subdomain-based flux-free a posteriori error estimators. Comput Methods Appl Mech Eng 195(4–6): 297–323

    Article  MATH  Google Scholar 

  29. Parés N, Santos H, Díez P (2009) Guaranteed energy error bounds for the poisson equation using a flux-free approach: solving the local problems in subdomains. Int J Numer Methods Eng 79(10): 1203–1244

    Article  MATH  Google Scholar 

  30. Parret-Fréaud A, Rey C, Gosselet P, Feyel F (2010) Fast estimation of discretization error for fe problems solved by domain decomposition. Comput Methods Appl Mech Eng 199: 3315–3323

    Article  MATH  Google Scholar 

  31. Peraire J, Patera A (1998) Bounds for linear-functional outputs of coercive partial differential equations: local indicators and adaptive refinement. In: Ladevèze P, Oden J (eds) Advances in adaptive computational methods in mechanics. Studies in Applied Mechanics, vol 47. Elsevier, pp 199–216. doi:10.1016/S0922-5382(98)80011-1. http://www.sciencedirect.com/science/article/B8GXV-4NR6463-C/2/599f64fa26ef69780b6aaafdd2d0b920aafdd2d0b920

  32. Pled F, Chamoin L, Ladevèze P (2011) On the techniques for constructing admissible stress fields in model verification: Performances on engineering examples. Int J Numer Methods Eng. doi:10.1002/nme.3180

  33. Prager W, Synge J (1947) Approximation in elasticity based on the concept of functions spaces. Q Appl Math 5: 261–269

    MathSciNet  Google Scholar 

  34. Prudhomme S, Oden J (1999) On goal-oriented error estimation for elliptic problems: application to the control of pointwise errors. Comput Methods Appl Mech Eng 176(1–4):313–331. doi:10.1016/S0045-7825(98)00343-0. http://www.sciencedirect.com/science/article/B6V29-40B2XYV-M/2/1ef91c8610e64eb8e9beb2caf6b6585e85e

  35. Prudhomme S, Nobile F, Chamoin L, Oden J (2004) Analysis of a subdomain-based error estimator for finite element approximations of elliptic problems. Numer Methods Partial Differ Equ 20(2): 165–192

    Article  MathSciNet  MATH  Google Scholar 

  36. Ramm E, Rank E, Rannacher R, Schweizerhof K, Stein E, Wendland W, Wittum G, Wriggers P, Wunderlich W (2003) Error-controlled adaptive finite elements in solid mechanics. Wiley, New York

    Google Scholar 

  37. Rannacher R, Suttmeier F (1997) A feedback approach to error control in finite element methods: application to linear elasticity. Comput Mech 19: 434–446

    Article  MathSciNet  MATH  Google Scholar 

  38. Strouboulis T, Babuška I, Datta D, Copps K, Gangaraj S (2000) A posteriori estimation and adaptive control of the error in the quantity of interest—part 1: a posteriori estimation of the error in the von Mises stress and the stress intensity factors. Comput Methods Appl Mech Eng 181: 261–294

    Article  MATH  Google Scholar 

  39. Verfürth R (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner, Stuttgart

    MATH  Google Scholar 

  40. Wiberg N, Díez P (2006) Special issue. Comput Methods Appl Mech Eng 195: 4–6

    Article  Google Scholar 

  41. Zienkiewicz O, Zhu J (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24: 337–357

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Ladevèze.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pled, F., Chamoin, L. & Ladevèze, P. An enhanced method with local energy minimization for the robust a posteriori construction of equilibrated stress fields in finite element analyses. Comput Mech 49, 357–378 (2012). https://doi.org/10.1007/s00466-011-0645-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0645-y

Keywords

Navigation