Skip to main content
Log in

The effect of loading on surface roughness at the atomistic level

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

One of the key points to better understand the origins of friction is to know how two surfaces in contact adhere to one another. In this paper we present molecular dynamics (MD) simulations of two aluminium bodies in contact, exposed to a range of normal loads. The contact surfaces of both aluminium bodies have a self-affine fractal roughness, but the exact roughness varies from simulation to simulation. Both bodies are allowed to have an adhesive interaction and are fully deformable. Tracking important contact parameters (such as contact area, number of contact clusters, and contact pressure) during a simulation is challenging. We propose an algorithm (embedded within a parallel MD code) which is capable of accessing these contact statistics. As expected, our results show that contact area is increasing in proportion with applied load, and that a higher roughness reduces contact area. Contact pressure distributions are compared to theoretical models, and we show that they are shifted into the tensile regime due to the inclusion of adhesion in our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen MP, Tildesley DJ (1987) Computer Simulation of Liquids. 1st edn. Oxford University Press, Oxford

    MATH  Google Scholar 

  2. Amontons G (1699) De la resistance causée dans les machines. Mem Acad R A 12: 275–282

    Google Scholar 

  3. Anciaux G, Molinari JF (2009) Contact mechanics at the nanoscale, a 3D multiscale approach. Int J Numer Meth Eng 79: 1041–1067

    Article  MATH  Google Scholar 

  4. Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24: 981–988

    Article  Google Scholar 

  5. Blau PJ (2001) The significance and use of the friction coefficient. Tribol Int 34: 585–591

    Article  Google Scholar 

  6. Bowden FP, Tabor D (2001) The friction and lubrication of solids. Oxford University Press, USA

    MATH  Google Scholar 

  7. Campañà C, Müser MH, Robbins MO (2008) Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. J Phys Condens Matter 20: 354013

    Article  Google Scholar 

  8. Cheng S, Luan B, Robbins MO (2010) Contact and friction of nanoasperities: effects of adsorbed monolayers. Phys Rev E 81(1): 016102

    Article  Google Scholar 

  9. Ciavarella M, Greenwood J, Paggi M (2008) Inclusion of “interaction” in the Greenwood and Williamson contact theory. Wear 265: 729–734

    Article  Google Scholar 

  10. Cormen TH, Leiserson CE, Rivest RL, Stein C (2009) Introduction to Algorithms, 3rd edn. MIT Press, Cambridge

    MATH  Google Scholar 

  11. Coulomb CA (1821) Théorie des machines simples. France, Paris

    Google Scholar 

  12. Daw MS, Baskes MI (1984) Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals. Phys Rev B 29: 6443–6453

    Article  Google Scholar 

  13. Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc Lond A 295: 300–319

    Article  Google Scholar 

  14. Hyun S, Pei L, Molinari JF, Robbins MO (2004) Finite-element analysis of contact between elastic self-affine surfaces. Phys Rev E 70: 026117

    Article  Google Scholar 

  15. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comp Phys 151: 283–312

    Article  MATH  Google Scholar 

  16. Knecht V, Marrink SJ (2007) Molecular dynamics simulations of lipid vesicle fusion in atomic detail. Biophys J 92: 4254–4261

    Article  Google Scholar 

  17. Lennard-Jones JE (1931) Cohesion. Proc Phys Soc 43: 461–482

    Article  MATH  Google Scholar 

  18. Luan B, Robbins MO (2005) The breakdown of continuum models for mechanical contacts. Nature 435: 929–932

    Article  Google Scholar 

  19. Luan B, Robbins MO (2006) Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys Rev E 74: 026111

    Article  Google Scholar 

  20. Luan B, Robbins MO (2009) Hybrid atomistic/continuum study of contact and friction between rough solids. Tribol Lett 36: 1–16

    Article  Google Scholar 

  21. Mandelbrot BB, Passoja DE, Paullay AJ (1984) Fractal character of fracture surfaces of metals. Nature 308: 721–722

    Article  Google Scholar 

  22. Manners W, Greenwood J (2006) Some observations on Persson’s diffusion theory of elastic contact. Wear 261: 600–610

    Article  Google Scholar 

  23. Markvoort AJ, Pieterse K, Steijaert MN, Spijker P, Hilbers PAJ (2005) The bilayer-vesicle transition is entropy-driven. J Phys Chem B 109: 22649–22654

    Article  Google Scholar 

  24. Miller GSP (1986) The definition and rendering of terrain maps. SIGGRAPH ’86: Proceedings of the 13th annual conference on Computer graphics and interactive techniques. ACM, New York, pp 39–48

  25. Mo Y, Szlufarska I (2010) Roughness picture of friction in dry nanoscale contacts. Phys Rev B 81: 035405

    Article  Google Scholar 

  26. Mo Y, Turner KT, Szlufarska I (2009) Friction laws at the nanoscale. Nature 457: 1116–1119

    Article  Google Scholar 

  27. Morse PM (1929) Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys Rev 34: 57–64

    Article  MATH  Google Scholar 

  28. Mosey NJ, Müser MH (2007) Atomistic modeling of friction. Rev Comp Chem 25: 67–124

    Article  Google Scholar 

  29. Nye JF (1985) Physical properties of crystals. Oxford University Press, Oxford

    Google Scholar 

  30. Paggi M, Ciavarella M (2010) The coefficient of proportionality κ between real contact area and load, with new asperity models. Wear 268: 1020–1029

    Article  Google Scholar 

  31. Persson BNJ, Albohr O, Tartaglino U, Volokitin AI, Tosatti E (2005) On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J Phys Condens Matter 17: R1–R62

    Article  Google Scholar 

  32. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117: 1–19

    Article  MATH  Google Scholar 

  33. Spijker P, van Hoof B, Debertrand M, Markvoort AJ, Vaidehi N, Hilbers PAJ (2010) Coarse grained molecular dynamic simulations of transmembrane protein–lipid systems. Int J Mol Sci 11: 2393–2420

    Article  Google Scholar 

  34. Spijker P, Markvoort AJ, Nedea SV, Hilbers PAJ (2010) Computation of accommodation coefficients and the use of velocity correlation profiles in molecular dynamics simulations. Phys Rev E 81: 011203

    Article  Google Scholar 

  35. Tadmor E, Ortiz M, Phillips R (1996) Quasicontinuum analysis of defects in solids. Philos Mag A Phys Cond Mat 73: 1529–1563

    Google Scholar 

  36. Voss RF (1985) Fundamental algorithms in computer graphics. Springer, Berlin

    Google Scholar 

  37. Yang C, Persson BNJ (2008) Contact mechanics: contact area and interfacial separation from small contact to full contact. J Phys Condens Matter 20: 215214

    Article  Google Scholar 

  38. Yang C, Persson BNJ (2008) Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys Rev Lett 100: 024303

    Article  Google Scholar 

  39. Yang C, Tartaglino U, Persson BN (2006) A multiscale molecular dynamics approach to contact mechanics. Eur Phys J E 19: 47–58

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Spijker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spijker, P., Anciaux, G. & Molinari, JF. The effect of loading on surface roughness at the atomistic level. Comput Mech 50, 273–283 (2012). https://doi.org/10.1007/s00466-011-0574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-011-0574-9

Keywords

Navigation