Skip to main content
Log in

Strategies for planar crack propagation based on the concept of material forces

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This paper presents a computational framework for the simulation of planar crack growth (including kinking) driven by “material forces”. An evolution law for the crack tip position is formulated, which is shown to give rise to different propagation strategies when subjected to certain assumptions on regularity. Three such strategies, that previously have been proposed in the literature in principle: Explicit Proportional Extension (EPE), Implicit Proportional Extension (IPE) and Maximum Parallel Release Rate (MPRR), are outlined and assessed. Based on the results of two numerical examples, it is concluded that the presented propagation strategies produce almost identical results and are robust with respect to time discretization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuhl E, Menzel A, Steinmann P (2003) Computational modeling of growth. Comput Mech 32: 71–88

    Article  MATH  Google Scholar 

  2. Menzel A, Denzer R, Steinmann P (2004) On the comparison of two approaches to compute material forces for inelastic materials. Applicaton to single-slip crystal-plasticity. Comput Methods Appl Mech Eng 193(48–51): 5411–5428

    Article  MathSciNet  MATH  Google Scholar 

  3. Materna D, Barthold F-J (2009) Goal-oriented r-adaptivity based on variational arguments in the physical and material spaces. Comput Method Appl Mech Eng 198(41–44): 3335–3351

    Article  MathSciNet  Google Scholar 

  4. Steinmann P (2008) On boundary potential energies in deformational and configurational mechanics. J Mech Phys Solids 56(3): 772–800

    Article  MathSciNet  MATH  Google Scholar 

  5. Maugin GA (1995) Material forces: concepts and applications. Appl Mech Rev 48(5): 213–245

    Article  Google Scholar 

  6. Needleman A, Li FZ, Shih CF (1985) A comparison of methods for calculating energy release rates. Eng Fract Mech 21(2): 405–421

    Article  Google Scholar 

  7. Simha NK, Fischer FD, Shan GX, Chen CR, Kolednik O (2008) J-integral and crack driving force in elastic-plastic materials. J Mech Phys Solids 56(9): 2876–2895

    Article  MathSciNet  MATH  Google Scholar 

  8. Steinmann P (2000) Application of material forces to hyperelastostatic fracture mechanics. i. continuum mechanical setting. Int J Solids Struct 37(48–50): 7371–7391

    Article  MathSciNet  MATH  Google Scholar 

  9. Steinmann P, Ackermann D, Barth FJ (2001) Application of material forces to hyperelastostatic fracture mechanics. ii. computational setting. Int J Solids Struct 38(32–33): 5509–5526

    Article  MATH  Google Scholar 

  10. Nguyen TD, Govindjee S, Klein PA, Gao H (2005) A material force method for inelastic fracture mechanics. J Mech Phys Solids 53(1): 91–121

    Article  MathSciNet  MATH  Google Scholar 

  11. Tillberg J, Larsson F, Runesson K (2010) On the role of material dissipation for the crack-driving force. Int J Plasticity. doi:10.1016/j.ijplas.2009.12.001

  12. Miehe C, Gurses E (2007) A robust algorithm for configurational-force-driven brittle crack propagation with r-adaptive mesh alignment. Int J Numer Methods Eng 72: 127–155

    Article  MathSciNet  MATH  Google Scholar 

  13. Denzer R, Barth FJ, Steinmann P (2003) Studies in elastic fracture mechanics based on the material force method. Int J Numer Methods Eng 58: 1817–1835

    Article  MATH  Google Scholar 

  14. Schütte H (2009) Curved crack-propagation based on configurational forces. Comp Mater Sci 46: 642–646

    Article  Google Scholar 

  15. Heintz P (2006) On the numerical modelling of quasi-static crack growth in linear elastic fracture mechanics. Int J Numer Methods Eng 65: 174–189

    Article  MathSciNet  MATH  Google Scholar 

  16. Fagerström M, Larsson R (2008) Approaches to dynamic fracture modeling at finite deformation. J Mech Phys Solids 56: 613–639

    Article  MathSciNet  MATH  Google Scholar 

  17. Adden S, Merzbacher M, Horst P (2006) Material forces as a simple criterion for the description of crack-turning problems. Aerosp Sci Technol 10: 519–526

    Article  MATH  Google Scholar 

  18. Adda-Bedia M (2004) Path prediction of kinked and branched cracks in plane situations. Phys Rev Lett 93(18): 185502-1–185502-4

    Article  Google Scholar 

  19. Broberg KB (1987) On crack paths. Eng Fract Mech 28(5/6): 663–679

    Article  Google Scholar 

  20. Runesson K, Larsson F, Steinmann P (2009) On energetic changes due to configurational motion of standard continua. Int J Solids Struct 46(6): 1464–1475

    Article  Google Scholar 

  21. Chen Y-H, Lu TJ (2004) On the path dependence of the J-integral in notch problems. Int J Solids Struct 41(3–4): 607–618

    Article  MATH  Google Scholar 

  22. Bilby BA, Cardew GE (1975) The crack with a kinked tip. Int J Fract 11: 708–712

    Article  Google Scholar 

  23. Hellen TK (1975) On the method of virtual crack extensions. Int J Numer Methods Eng 9: 187–207

    Article  MATH  Google Scholar 

  24. Ma L, Korsunsky AM (2005) On the use of vector J-integral in crack growth criteria for brittle solids. Int J Fract 133: L39–L46

    Article  MATH  Google Scholar 

  25. Gurtin ME, Podio-Guidugli P (1998) Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving. J Mech Solids 46(8): 1343–1378

    Article  MathSciNet  MATH  Google Scholar 

  26. Denzer R (2006) Computational configurational mechanics. Dissertation, University of Kaiserslautern

  27. Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996) Quasi-automatic simulation of crack propagation for 2D lefm problems. Eng Fract Mech 55(2): 321–334

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jim Brouzoulis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brouzoulis, J., Larsson, F. & Runesson, K. Strategies for planar crack propagation based on the concept of material forces. Comput Mech 47, 295–304 (2011). https://doi.org/10.1007/s00466-010-0542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-010-0542-9

Keywords

Navigation