Skip to main content
Log in

Convergence acceleration of iterative algorithms. Applications to thin shell analysis and Navier–Stokes equations

  • Original Paper
  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

This work deals with the convergence acceleration of iterative nonlinear methods. Two convergence accelerating techniques are evaluated: the Modified Mininal Polynomial Extrapolation Method (MMPE) and the Padé approximants. The algorithms studied in this work are iterative correctors: Newton’s modified method, a high-order iterative corrector presented in Damil et al. (Commun Numer Methods Eng 15:701–708, 1999) and an original algorithm for vibration of viscoelastic structures. We first describe the iterative algorithms for the considered nonlinear problems. Secondly, the two accelerating techniques are presented. Finally, through several numerical tests from the thin shell theory, Navier–Stokes equations and vibration of viscoelastic shells, the advantages and drawbacks of each accelerating technique is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Damil N, Potier-Ferry M, Najah A, Chari R, Lahmam H (1999) An iterative method based upon Padé approximants. Commun Numer Methods Eng 15: 701–708

    Article  MATH  MathSciNet  Google Scholar 

  2. Mallil E, Lahmam H, Damil N, Potier-Ferry M (2000) An iterative process based on homotopy and perturbation techniques. Comput Methods Appl Mech Eng 190: 1845–1858

    Article  MATH  Google Scholar 

  3. Cadou JM, Damil N, Potier-Ferry M, Braikat B (2004) Projection technique to improve high order iterative correctors. Finite Elem Anal Des 41: 285–309

    Article  Google Scholar 

  4. Cabay S, Jackson LW (1976) A polynomial extrapolation method for finding limits and antilimits of vector sequences. SIAM J Numer Anal 13: 734–752

    Article  MATH  MathSciNet  Google Scholar 

  5. Mesina M (1977) Convergence acceleration for the iterative solution of the equation X = AX  + f. Comput Methods Appl Mech Engrg 10(2): 165–173

    Article  MATH  MathSciNet  Google Scholar 

  6. Brezinski C (1975) Généralisations de la transformation de Shanks, de la table de Padé et de l’ ϵ-algorithme. Calcolo 12: 317–360

    Article  MathSciNet  Google Scholar 

  7. Jbilou K, Sadok H (1991) Some results about vector extrapolation methods and related fixed point iterations. J Comput Appl Math 36: 385–398

    Article  MATH  MathSciNet  Google Scholar 

  8. Jbilou K, Sadok H (2000) Vector extrapolation methods, Applications and numerical comparison. J Comput Appl Math 122: 149–165

    Article  MATH  MathSciNet  Google Scholar 

  9. Graves-Morris PR, Roberts DE, Salam A (2000) The epsilon algorithm and related topics. J Comp Appl Math 122: 51–80

    Article  MATH  MathSciNet  Google Scholar 

  10. Brezinski C (2000) Convergence acceleration during the 20th century. J Comp Appl Math 122: 1–21

    Article  MATH  MathSciNet  Google Scholar 

  11. Najah A, Cochelin B, Damil N, Potier-Ferry M (1998) A critical review of asymptotic numerical methods. Arch Comput Methods Eng 5: 3–22

    Article  MathSciNet  Google Scholar 

  12. Duigou L, Daya EM, Potier-Ferry M (2003) Iterative algorithms for non-linear eigenvalue problems. Application to vibrations of viscoelastic shells. Comput Methods Appl Mech Eng 192: 1323–1335

    Article  MATH  Google Scholar 

  13. Cochelin B (1994) A path-following technique via an asymptotic-numerical method. Comput Struct 53(5): 1181–1192

    Article  MATH  Google Scholar 

  14. De Boer H, Van Keulen F (1997) Padé approximant applied to a non-linear finite element solution strategy. Commun Numer Methods Eng 13: 593–602

    Article  MATH  Google Scholar 

  15. Brezinski C, Van Iseghem J (1994) Padé approximants. In: Ciarlet PG, Lions JL(eds) Handbook of numerical analysis, vol 3. North-Holland, Amsterdam

    Google Scholar 

  16. Baker GA, Graves-Morris P (1996) Padé approximants, encyclopedia of mathematics and its applications, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  17. Damil N, Cadou JM, Potier-Ferry M (2004) Mathematical and numerical connections between polynomial extrapolations and Padé approximants. Commun Numer Methods Eng 20(9): 699–707

    Article  MATH  MathSciNet  Google Scholar 

  18. Jamai R, Damil N (2003) Influence of iterated Gram-Schmidt orthonormalization in the asymptotic numerical method. Comptes Rendus Mec 331(5): 351–356

    Article  Google Scholar 

  19. Giraud L, Langou JL, Rozloznik M (2005) The loss of orthogonality in the Gram–Schmidt orthogonalization process. Comput Math Appl 50(7): 1069–1075

    Article  MATH  MathSciNet  Google Scholar 

  20. Eriksson A (1991) Derivatives of tangential stiffness matrices for equilibrium path descriptions. Int J Numer Methods Eng 32: 1093–1113

    Article  MATH  Google Scholar 

  21. Kouhia R, Mikkola M (1999) Some aspects of efficient path-following. Comput Struct 72: 509–524

    Article  MATH  Google Scholar 

  22. Wynn P (1956) On a device for calculating the e m (S n ) transformations. Math Tables Automat Comp 10: 91–96

    Article  MATH  MathSciNet  Google Scholar 

  23. Wynn P (1966) On the convergence and stability of the epsilon algorithm. SIAM J Numer Anal 3: 91–122

    Article  MATH  MathSciNet  Google Scholar 

  24. Lahmam H, Cadou JM, Zahrouni H, Damil N, Potier-Ferry M (2002) High-order predictor-corrector algorithms. Int J Numer Method Eng 55: 685–704

    Article  MATH  Google Scholar 

  25. Assidi M Méthode asymptotique numérique pour la plasticité, 2007. Doctoral dissertation. Université Paul Verlaine Metz

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Cadou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cadou, J.M., Duigou, L., Damil, N. et al. Convergence acceleration of iterative algorithms. Applications to thin shell analysis and Navier–Stokes equations. Comput Mech 43, 253–264 (2009). https://doi.org/10.1007/s00466-008-0303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00466-008-0303-1

Keywords

Navigation