Skip to main content
Log in

Morphology of the murine peritoneum after pneumoperitoneum vs laparotomy

A scanning electron microscopy study

  • Original Articles
  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

Although there have been studies of the effects of pneumoperitoneum on the peritoneal cavity, we still do not know whether the morphologic changes to the peritoneum are different for pneumoperitoneum vs laparotomy. Using scanning electron microscopy, we examined the murine peritoneum after pneumoperitoneum vs laparotomy and compared the changes.

Methods

Forty-five mice were anesthetized with diethyl ether and divided into seven groups. Pneumoperitoneum was established at 5 mmHg for 30 min with carbon dioxide (CO2) (n=9), helium (n=9), and air (n=9). One group underwent laparotomy for 30 min (n=9), and a control group underwent anesthesia only (n=3). CO2 pneumoperitoneum was further established at 10 mmHg for 30 min (n=3) and at 5 mmHg for 60 min (n=3). After the procedures, the peritoneum was resected from the mesenterium of the small intestine in each animal and examined by scanning electron microscope for morphologic changes of the mesothelial cells.

Results

Bulging up of the mesothelial cells was evident immediately after pneumoperitoneum, whereas detachment of the mesothelial cells was present immediately after laparotomy. Bulging up of the mesothelial cells was reduced at 24 h after CO2 pneumoperitoneum and fully resolved at 72 h in all pneumoperitoneum groups, whereas the mesothelial cells remained detached at 72 h in the laparotomy group. Intercellular clefts were found immediately after helium pneumoperitoneum and were present at 24 h and 72 h after helium pneumoperitoneum, but they were not seen after air pneumoperitoneum and were only evident after CO2 pneumoperitoneum at 10 mmHg. Depression of the mesothelial cell surface was observed when pneumoperitoneum lasted 60 min.

Conclusion

Morphologic peritoneal alterations after pneumoperitoneum differed from those after laparotomy and were influenced by the type of gas, amount of pressure, and duration of insufflation. These peritoneal changes after pneumoperitoneum may be associated with a specific intraperitoneal tumor spread after laparoscopic cancer surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adachi Y, Shiraishi N, Shiromizu A, Bandoh T, Aramaki M, Kitano S (2000) Laparoscopy-assisted Billroth I gastrectomy compared with conventional open gastrectomy. Arch Surg 135: 806–810

    Article  PubMed  CAS  Google Scholar 

  2. Adachi Y, Suematsu T, Shiraishi N, Katsuta T, Morimoto A, Kitano S, Akazawa K (1999) Quality of life after laparoscopy-assisted Billroth I gastrectomy. Ann Surg 229: 49–54

    Article  PubMed  CAS  Google Scholar 

  3. Allardyce RA, Morreau P, Bagshaw PF (1997) Operative factors affecting tumor cell distribution following laparoscopic colectomy in a porcine model. Dis Colon Rectum 40: 939–945

    Article  PubMed  CAS  Google Scholar 

  4. Allendorf JDF, Bessler M, Kayton ML, Oesterling SD, Treat MR, Nowygrod R, Whelan RL (1995) Increased tumor establishment and growth after laparotomy vs laparoscopy in a murine model. Arch Surg 130: 649–653

    PubMed  CAS  Google Scholar 

  5. Aoki Y, Shimura H, Li H, Mizumoto K, Date K, Tanaka M (1999) A model of port-site metastases of gallbladder cancer: the influence of peritoneal injury and its repair on abdominal wall metastases. Surgery 125: 553–559

    PubMed  CAS  Google Scholar 

  6. Bloechle C, Kluth D, Holstein AF, Emmermann A, Strate T, Zornig C, Izbicki JR (1999) A pneumoperitoneum perpetuates severe damage to the ultrastructual integrity of parietal peritoneum in gastric perforation-induced peritonitis rats. Surg Endosc 13: 683–688

    Article  PubMed  CAS  Google Scholar 

  7. Bouvy ND, Marquet RL, Jeekel H, Bonjer HJ (1996) Impact of gas(less) laparoscopy and laparotomy on peritoneal tumor growth and abdominal wall metastases. Ann Surg 224: 694–701

    Article  PubMed  CAS  Google Scholar 

  8. Gutt CN, Riemer V, Kim ZG, Jacobi CA, Paolucci V, Lorenz M (1999) Impact of laparoscopic colonic resection on tumor growth and spread in an experimental model. Br J Surg 86: 1180–1184

    Article  PubMed  CAS  Google Scholar 

  9. Ishida H, Murata N, Yamada H, Nomura T, Shimomura K, Fujioka M, Idezuki Y (2000) Influence of trocar placement and CO2 pneumoperitoneum on port site metastasis following laparoscopic tumor surgery. Surg Endosc 14: 193–197

    Article  PubMed  CAS  Google Scholar 

  10. Jacobi CA, Ordemann J, Böhm B, Zieren HU, Liebenthal C, Volk HD, Müller JM (1997) The influence of laparotomy and laparoscopy on tumor growth in a rat model. Surg Endosc 11: 618–621

    Article  PubMed  CAS  Google Scholar 

  11. Jacobi CA, Sabat R, Böhm B, Zieren HU, Volk HD, Müller JM (1997) Pneumoperitoneum with carbon dioxide stimulates growth of malignant colonic cells. Surgery 121: 72–78

    Article  PubMed  CAS  Google Scholar 

  12. Jacobi CA, Wenger FA, Ordemann J, Gutt C, Sabat R, Müller JM (1998) Experimental study of the effect of intra-abdominal pressure during laparoscopy on tumour growth and port site metastasis. Br J Surg 85: 1419–1422

    Article  PubMed  CAS  Google Scholar 

  13. Kitano S, Shimoda K, Miyahara M, Shiraishi N, Bandoh T, Yoshida T, Shuto K, Kobayashi M (1995) Laparoscopic approaches in the management of patients with early gastric carcinomas. Surg Laparosc Endosc 5: 359–362

    PubMed  CAS  Google Scholar 

  14. Knolmayer TJ, Asbun HJ, Shibata G, Bowyer MW (1997) An experimental model of cellular aerosolization during laparoscopic surgery. Surg Laparosc Endosc 7: 399–402

    Article  PubMed  CAS  Google Scholar 

  15. Kuntz C, Wunsch A, Bödeker C, Bay F, Rosch R, Windeler J, Herfarth C (2000) Effect of pressure and gas type on intraabdominal, subcutaneous, and blood pH in laparoscopy. Surg Endosc 14: 367–371

    Article  PubMed  CAS  Google Scholar 

  16. Mathew G, Watson DI, Rofe AM, Baigrie CF, Ellis T, Jamieson GG (1996) Wound metastases following laparoscopic and open surgery for abdominal cancer in a rat model. Br J Surg 83: 1087–1090

    Article  PubMed  CAS  Google Scholar 

  17. Mutter D, Hajri A, Tassetti V, Solis-Caxaj C, Aprahamian M, Marescauz J (1999) Increased tumor growth and spread after laparoscopy vs laparotomy: influence of tumor manipulation in a rat model. Surg Endosc 13: 365–370

    Article  PubMed  CAS  Google Scholar 

  18. Neuhaus SJ, Ellis T, Rofe AM, Pike GK, Jamieson GG, Watson DI (1998) Tumor implantation following laparoscopy using different insufflation gases. Sur Endosc 12: 1300–1302

    Article  CAS  Google Scholar 

  19. Neuhaus SJ, Texler M, Hewett PJ, Watson DI (1998) Port-site metastases following laparoscopic surgery [Review]. Br J Surg 85: 735–741

    Article  PubMed  CAS  Google Scholar 

  20. Neuhaus SJ, Watson DI, Ellis T, Rowland R, Rofe AM, Pike GK, Mathew G, Jamieson GG (1998) Wound metastasis after laparoscopy with different insufflation gases. Surgery 123: 579–583

    Article  PubMed  CAS  Google Scholar 

  21. Pauwels M, Lauwers P, Hendriks J, Hubens A, Eyskens E, Hubens G (1999) The effect of CO2 pneumoperitoneum on the growth of a solid colon carcinoma in rats. Surg Endosc 13: 998–1000

    Article  PubMed  CAS  Google Scholar 

  22. Poulin EC, Mamazza J, Schlachta CM, Grégoire R, Roy N (1999) Laparoscopic resection does not adversely affect early survival curves in patients undergoing surgery for colorectal carcinoma: five-year audit. Dis Colon Rectum 42: 327–333

    Article  Google Scholar 

  23. Stocchi L, Nelson H (2000) Wound recurrences following laparoscopic-assisted colectomy for cancer. Arch Surg 135: 948–958

    Article  PubMed  CAS  Google Scholar 

  24. Suematsu T, Shiromizu A, Yamaguchi K, Shiraishi N, Adachi Y, Kitano S (1999) Convenient murine pneumoperitoneal model for the study of laparoscopic cancer surgery. Surg Laparosc Endosc 9: 279–281

    Article  CAS  Google Scholar 

  25. Takiguchi S, Matsuura N, Hamada Y, Taniguchi E, Sekimoto M, Tsujinaka M, Shiozaki H, Monden M, Ohashi S (2000) Influence of CO2 pneumoperitoneum during laparoscopic surgery on cancer cell growth. Surg Endosc 14: 41–44

    Article  PubMed  CAS  Google Scholar 

  26. Volz J, Köster S, Spacek Z, Paweletz N (1999) Characteristic alterations of the peritoneum after carbon dioxide pneumoperitoneum. Surg Endosc 13: 611–614

    Article  PubMed  CAS  Google Scholar 

  27. Volz J, Köster S, Spacek Z, Paweletz N (1999) The influence of pneumoperitoneum used in laparoscopic surgery on an intraabdominal tumor growth. Cancer 86: 770–774

    Article  PubMed  CAS  Google Scholar 

  28. Wexner SD, Cohen SM (1995) Port site metastases after laparoscopic colorectal surgery for cure of malignancy [review]. Br J Surg 82: 295–298

    Article  PubMed  CAS  Google Scholar 

  29. Wittich P, Steyerberg EW, Simons SHP, Marquet RL, Bomjer HJ (2000) Intraperitoneal tumor growth is influenced by pressure of carbon dioxide pneumoperitoneum. Surg Endosc 14: 817–819

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Online publication: 12 June 2001

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suematsu, T., Hirabayashi, Y., Shiraishi, N. et al. Morphology of the murine peritoneum after pneumoperitoneum vs laparotomy. Surg Endosc 15, 954–958 (2001). https://doi.org/10.1007/s004640090100

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s004640090100

Key words

Navigation