Skip to main content

Advertisement

Log in

Intraoperative workload in robotic surgery assessed by wearable motion tracking sensors and questionnaires

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

The introduction of robotic technology has revolutionized radical prostatectomy surgery. However, the potential benefits of robotic techniques may have trade-offs in increased mental demand for the surgeon and the physical demand for the assisting surgeon. This study employed an innovative motion tracking tool along with validated workload questionnaire to assess the ergonomics and workload for both assisting and console surgeons intraoperatively.

Methods

Fifteen RARP cases were collected in this study. Cases were performed by 10 different participants, six primarily performed console tasks and four primarily performed assisting tasks. Participants had a median 12 (min—3, max—25) years of surgical experience. Both console and assisting surgeons performed robotic prostatectomy cases while wearing inertial measurement units (IMUs) that continuously track neck, shoulder, and torso motion without interfering with the sterile environment. Postoperatively, participants completed a workload questionnaire (SURG-TLX) and a body part discomfort questionnaire.

Results

Twenty-six questionnaires were completed from 13 assisting and 13 console surgeons over the 15 cases. Postoperative pain was reported highest for the right shoulder and neck. Mental demands were 41 % higher for surgeons at the console than assisting (p < 0.05), while physical demands were not significantly different. Assisting surgeons worked in demanding neck postures for 58 % of the procedure compared to 24 % for the console surgeon (p < 0.01). Surgeons at the console were primarily static and showed 2–5 times fewer movements than assisting surgeons (p < 0.01).

Conclusions

Postures were more ergonomic during console tasks than when assisting by the bedside; however, the console may constrain postures leading to static loads that have been associated with musculoskeletal symptoms for the neck, torso, and shoulders. The IMU sensors were effective at quantifying ergonomics in robotic prostatectomies, and these methods and findings have broad applications to other robotic procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chang SL, Kibel AS, Brooks JD, Chung BI (2015) The impact of robotic surgery on the surgical management of prostate cancer in the USA. BJU Int 115(6):929–936. doi:10.1111/bju.12850

    Article  PubMed  Google Scholar 

  2. Carlsson S, Nilsson AE, Schumacher MC, Jonsson MN, Volz DS, Steineck G, Wiklund PN (2010) Surgery-related complications in 1253 Robot-assisted and 485 open retropubic radical prostatectomies at the Karolinska University Hospital, Sweden. Urology 75(5):1092–1097. doi:10.1016/j.urology.2009.09.075

    Article  PubMed  Google Scholar 

  3. Diana M, Marescaux J (2015) Robotic surgery. Br J Surg 102(2):e15–e28. doi:10.1002/bjs.9711

    Article  CAS  PubMed  Google Scholar 

  4. Alemozaffar M, Sanda M, Yecies D, Mucci LA, Stampfer MJ, Kenfield SA (2015) Benchmarks for operative outcomes of robotic and open radical prostatectomy: results from the health professionals follow-up study. Eur Urol 67(3):432–438. doi:10.1016/j.eururo.2014.01.039

    Article  PubMed  Google Scholar 

  5. Reza M, Maeso S, Blasco JA, Andradas E (2010) Meta-analysis of observational studies on the safety and effectiveness of robotic gynaecological surgery. Br J Surg 97(12):1772–1783. doi:10.1002/bjs.7269

    Article  CAS  PubMed  Google Scholar 

  6. Close A, Robertson C, Rushton S, Shirley M, Vale L, Ramsay C, Pickard R (2013) Comparative cost-effectiveness of robot-assisted and standard laparoscopic prostatectomy as alternatives to open radical prostatectomy for treatment of men with localised prostate cancer: a health technology assessment from the perspective of the UK national health service. Eur Urol 64(3):361–369. doi:10.1016/j.eururo.2013.02.040

    Article  PubMed  Google Scholar 

  7. Ficarra V, Novara G, Rosen RC, Artibani W, Carroll PR, Costello A, Menon M, Montorsi F, Patel VR, Stolzenburg J-U, Van der Poel H, Wilson TG, Zattoni F, Mottrie A (2012) Systematic review and meta-analysis of studies reporting urinary continence recovery after robot-assisted radical prostatectomy. Eur Urol 62(3):405–417. doi:10.1016/j.eururo.2012.05.045

    Article  PubMed  Google Scholar 

  8. Ficarra V, Novara G, Ahlering TE, Costello A, Eastham JA, Graefen M, Guazzoni G, Menon M, Mottrie A, Patel VR (2012) Systematic review and meta-analysis of studies reporting potency rates after robot-assisted radical prostatectomy. Eur Urol 62(3):418–430

    Article  PubMed  Google Scholar 

  9. Novara G, Ficarra V, Mocellin S, Ahlering TE, Carroll PR, Graefen M, Guazzoni G, Menon M, Patel VR, Shariat SF, Tewari AK, Van Poppel H, Zattoni F, Montorsi F, Mottrie A, Rosen RC, Wilson TG (2012) Systematic review and meta-analysis of studies reporting oncologic outcome after robot-assisted radical prostatectomy. Eur Urol 62(3):382–404. doi:10.1016/j.eururo.2012.05.047

    Article  PubMed  Google Scholar 

  10. Novara G, Ficarra V, Rosen RC, Artibani W, Costello A, Eastham JA, Graefen M, Guazzoni G, Shariat SF, Stolzenburg J-U (2012) Systematic review and meta-analysis of perioperative outcomes and complications after robot-assisted radical prostatectomy. Eur Urol 62(3):431–452

    Article  PubMed  Google Scholar 

  11. Boggi U, Signori S, De Lio N, Perrone VG, Vistoli F, Belluomini M, Cappelli C, Amorese G, Mosca F (2013) Feasibility of robotic pancreaticoduodenectomy. Br J Surg 100(7):917–925. doi:10.1002/bjs.9135

    Article  CAS  PubMed  Google Scholar 

  12. Gutt CN, Oniu T, Mehrabi A, Kashfi A, Schemmer P, Büchler MW (2004) Robot-assisted abdominal surgery. Br J Surg 91(11):1390–1397. doi:10.1002/bjs.4700

    Article  CAS  PubMed  Google Scholar 

  13. Butturini G, Damoli I, Crepaz L, Malleo G, Marchegiani G, Daskalaki D, Esposito A, Cingarlini S, Salvia R, Bassi C (2015) A prospective non-randomised single-center study comparing laparoscopic and robotic distal pancreatectomy. Surg Endosc 29(11):3163–3170. doi:10.1007/s00464-014-4043-3

    Article  PubMed  Google Scholar 

  14. Bagrodia A, Raman JD (2009) Ergonomic considerations of radical prostatectomy: physician perspective of open, laparoscopic, and robot-assisted techniques. J Endourol 23(4):627–633

    Article  PubMed  Google Scholar 

  15. Park JY, Jo MJ, Nam BH, Kim Y, Eom BW, Yoon HM, Ryu KW, Kim YW, Lee JH (2012) Surgical stress after robot-assisted distal gastrectomy and its economic implications. Br J Surg 99(11):1554–1561. doi:10.1002/bjs.8887

    Article  CAS  PubMed  Google Scholar 

  16. Lowndes BR, Hallbeck MS (2014) Overview of human factors and ergonomics in the OR, with an emphasis on minimally invasive surgeries. Hum Factors Ergon Manuf Serv Ind 24(3):308–317. doi:10.1002/hfm.20383

    Article  Google Scholar 

  17. Park A, Lee G, Seagull FJ, Meenaghan N, Dexter D (2010) Patients benefit while surgeons suffer: an impending epidemic. J Am Coll Surg 210(3):306–313

    Article  PubMed  Google Scholar 

  18. Szeto GP, Ho P, Ting AC, Poon JT, Cheng SW, Tsang RC (2009) Work-related musculoskeletal symptoms in surgeons. J Occup Rehabil 19(2):175–184

    Article  PubMed  Google Scholar 

  19. Davis WT, Fletcher SA, Guillamondegui OD (2014) Musculoskeletal occupational injury among surgeons: effects for patients, providers, and institutions. J Surg Res 189(2):207–212. doi:10.1016/j.jss.2014.03.013

    Article  PubMed  Google Scholar 

  20. van Det MJ, Meijerink WJHJ, Hoff C, van Veelen MA, Pierie JPEN (2008) Ergonomic assessment of neck posture in the minimally invasive surgery suite during laparoscopic cholecystectomy. Surg Endosc 22(11):2421–2427. doi:10.1007/s00464-008-0042-6

    Article  PubMed  Google Scholar 

  21. Miller K, Benden M, Pickens A, Shipp E, Zheng Q (2012) Ergonomics principles associated with laparoscopic surgeon injury/illness. Hum Factors: J Hum Factors Ergon Soc 54(6):1087–1092

    Article  Google Scholar 

  22. Yu D, Lowndes B, Morrow M, Kaufman K, Bingener J, Hallbeck S (2015) Impact of novel shift handle laparoscopic tool on wrist ergonomics and task performance. Surg Endosc. doi:10.1007/s00464-015-4634-7

    Google Scholar 

  23. Stefanidis D, Wang F, Korndorffer JR Jr, Dunne JB, Scott DJ (2010) Robotic assistance improves intracorporeal suturing performance and safety in the operating room while decreasing operator workload. Surg Endosc 24(2):377–382

    Article  PubMed  Google Scholar 

  24. Berguer R, Smith W (2006) An ergonomic comparison of robotic and laparoscopic technique: the influence of surgeon experience and task complexity. J Surg Res 134(1):87–92

    Article  PubMed  Google Scholar 

  25. Lee GI, Lee MR, Clanton T, Sutton E, Park AE, Marohn MR (2014) Comparative assessment of physical and cognitive ergonomics associated with robotic and traditional laparoscopic surgeries. Surg Endosc 28(2):456–465

    Article  PubMed  Google Scholar 

  26. Hubert N, Gilles M, Desbrosses K, Meyer JP, Felblinger J, Hubert J (2013) Ergonomic assessment of the surgeon’s physical workload during standard and robotic assisted laparoscopic procedures. Int J Med Robot Comput Assist Surg 9(2):142–147. doi:10.1002/rcs.1489

    Article  CAS  Google Scholar 

  27. Craven R, Franasiak J, Mosaly P, Gehrig PA (2013) Ergonomic deficits in robotic gynecologic oncology surgery: a need for intervention. J Minim Invasive Gynecol 20(5):648–655

    Article  PubMed  Google Scholar 

  28. Nilsson AE, Carlsson S, Laven BA, Wiklund NP (2006) Karolinska prostatectomy: a robot-assisted laparoscopic radical prostatectomy technique. Scand J Urol Nephrol 40(6):453–458. doi:10.1080/00365590600911357

    Article  PubMed  Google Scholar 

  29. Trejo A, Doné K, DiMartino A, Oleynikov D, Hallbeck M (2006) Articulating vs. conventional laparoscopic grasping tools—surgeons’ opinions. Int J Ind Ergon 36(1):25–35

    Article  Google Scholar 

  30. Beurskens AJ, Bültmann U, Kant I, Vercoulen JH, Bleijenberg G, Swaen GM (2000) Fatigue among working people: validity of a questionnaire measure. Occup Environ Med 57(5):353–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wilson MR, Poolton JM, Malhotra N, Ngo K, Bright E, Masters RS (2011) Development and validation of a surgical workload measure: the surgery task load index (SURG-TLX). World J Surg 35(9):1961–1969

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vassiliou MC, Feldman LS, Andrew CG, Bergman S, Leffondré K, Stanbridge D, Fried GM (2005) A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg 190(1):107–113

    Article  PubMed  Google Scholar 

  33. Abdelrahman A, Bingener J, Yu D, Lowndes B, Mohamed A, McConico A, Hallbeck MS (2015) Impact of single-incision laparoscopic cholecystectomy (SILC) versus conventional laparoscopic cholecystectomy (CLC) procedures on surgeon stress and workload: a randomized controlled trial. Surg Endosc. doi:10.1007/s00464-015-4332-5

    PubMed  PubMed Central  Google Scholar 

  34. Schall MC, Fethke NB, Chen H, Oyama S, Douphrate DI (2015) Accuracy and repeatability of an inertial measurement unit system for field-based occupational studies. Ergonomics. doi:10.1080/00140139.2015.1079335

    PubMed  Google Scholar 

  35. Fantozzi S, Giovanardi A, Magalhães FA, Di Michele R, Cortesi M, Gatta G (2015) Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units. J Sports Sci. doi:10.1080/02640414.2015.1088659

    Google Scholar 

  36. Anderson A, Hilbert A, Bertrand P, McFarland S, Newman D (2014) In-suit sensor systems for characterizing human-space suit interaction. In: 44th International conference on environmental systems

  37. Cohen RG, Gurfinkel VS, Kwak E, Warden AC, Horak FB (2015) Lighten up specific postural instructions affect axial rigidity and step initiation in patients with Parkinson’s disease. Neurorehabil Neural Repair 29(9):878–888

    Article  PubMed  PubMed Central  Google Scholar 

  38. Horak F, King L, Mancini M (2015) Role of body-worn movement monitor technology for balance and gait rehabilitation. Phys Ther 95(3):461–470

    Article  PubMed  Google Scholar 

  39. Hart SG, NASA-Task Load Index (NASA-TLX); 20 years later. In: Proceedings of the human factors and ergonomics society annual meeting, 2006. Sage Publications, pp 904–908

  40. Morrow MM, Hurd WJ, Kaufman KR, An K-N (2010) Shoulder demands in manual wheelchair users across a spectrum of activities. J Electromyogr Kinesiol 20(1):61–67

    Article  PubMed  PubMed Central  Google Scholar 

  41. McAtamney L, Corlett EN (1993) RULA: a survey method for the investigation of work-related upper limb disorders. Appl Ergon 24(2):91–99

    Article  CAS  PubMed  Google Scholar 

  42. Szeto GP, Cheng SW, Poon JT, Ting AC, Tsang RC, Ho P (2012) Surgeons’ static posture and movement repetitions in open and laparoscopic surgery. J Surg Res 172(1):e19–e31

    Article  PubMed  Google Scholar 

  43. Yu D, Green C, Kasten SJ, Sackllah ME, Armstrong TJ (2016) Effect of alternative video displays on postures, perceived effort, and performance during microsurgery skill tasks. Appl Ergon 53:281–289. doi:10.1016/j.apergo.2015.10.016

    Article  PubMed  Google Scholar 

  44. Plerhoples TA, Hernandez-Boussard T, Wren SM (2012) The aching surgeon: a survey of physical discomfort and symptoms following open, laparoscopic, and robotic surgery. J Robot Surg 6(1):65–72

    Article  PubMed  Google Scholar 

  45. Bernard BP, Putz-Anderson V (1997) Musculoskeletal disorders and workplace factors: a critical review of epidemiologic evidence for work-related musculoskeletal disorders of the neck, upper extremity, and low back. US Department of Health and Human Services (DHHS) publication no 97-141. National Institute for Occupational Safety and Health, Cincinnati

    Google Scholar 

  46. Åkesson I, Balogh I, Hansson GÅ (2012) Physical workload in neck, shoulders and wrists/hands in dental hygienists during a work-day. Appl Ergon 43(4):803–811. doi:10.1016/j.apergo.2011.12.001

    Article  PubMed  Google Scholar 

  47. Arvidsson I, Balogh I, Hansson G-Å, Ohlsson K, Åkesson I, Nordander C (2012) Rationalization in meat cutting—consequences on physical workload. Appl Ergon 43(6):1026–1032. doi:10.1016/j.apergo.2012.03.001

    Article  PubMed  Google Scholar 

  48. Byström JU, Hansson G-Å, Rylander L, Ohlsson K, Källrot G, Skerfving S (2002) Physical workload on neck and upper limb using two CAD applications. Appl Ergon 33(1):63–74. doi:10.1016/S0003-6870(01)00044-8

    Article  PubMed  Google Scholar 

  49. Mazur LM, Mosaly PR, Hoyle LM, Jones EL, Marks LB (2013) Subjective and objective quantification of physician’s workload and performance during radiation therapy planning tasks. Pract Radiat Oncol 3(4):e171–e177. doi:10.1016/j.prro.2013.01.001

    Article  PubMed  Google Scholar 

  50. Mosaly PR, Mazur LM, Jones EL, Hoyle L, Zagar T, Chera BS, Marks LB (2013) Quantifying the impact of cross coverage on physician’s workload and performance in radiation oncology. Pract Radiat Oncol 3(4):e179–e186. doi:10.1016/j.prro.2013.02.007

    Article  PubMed  Google Scholar 

  51. Descatha A, Dale AM, Silverstein BA, Roquelaure Y, Rempel D (2015) Lateral epicondylitis: new evidence for work relatedness. Joint Bone Spine 82(1):5–7

    Article  PubMed  Google Scholar 

  52. Fan ZJ, Harris-Adamson C, Gerr F, Eisen EA, Hegmann KT, Bao S, Silverstein B, Evanoff B, Dale AM, Thiese MS (2015) Associations between workplace factors and carpal tunnel syndrome: a multi-site cross sectional study. Am J Ind Med 58(5):509–518

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support and participation of the surgeons involved in this study. This research made possible in part by the Mayo Clinic Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Hallbeck.

Ethics declarations

Disclosures

Dr. Collins reports grants from Intuitive Surgical, outsider of the submitted work. Drs. Yu, Morrow, Dural, Hallbeck, Kjellman, Forsman, and Ms. Yang have no conflicts of interest or financial ties to disclose.

Additional information

Susan Hallbeck, Magnus Kjellman and Mikael Forsman have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, D., Dural, C., Morrow, M.M.B. et al. Intraoperative workload in robotic surgery assessed by wearable motion tracking sensors and questionnaires. Surg Endosc 31, 877–886 (2017). https://doi.org/10.1007/s00464-016-5047-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-016-5047-y

Keywords

Navigation