Skip to main content

Advertisement

Log in

Improvement in Swallowing Function in Patients with Previous Irradiation for Nasopharyngeal Carcinoma by Expiratory Muscle Strength Training

  • Original Article
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Dysphagia and chronic aspiration are common post-irradiation complications in nasopharyngeal carcinoma (NPC) survivors. Expiratory Muscle Strength Training (EMST) is a simple device-driven exercise therapy for swallowing training. This study investigates the effectiveness of EMST in a group of post-irradiated NPC patients. This prospective cohort, including twelve patients with previous irradiation for NPC and with swallowing disturbance, was performed between 2019 and 2021 in a single institution. Patients were trained with EMST for 8 weeks. Non-parametric analyses examined effects of EMST on primary outcome, maximum expiratory pressure. Secondary outcomes were measured with Penetration-aspiration scale, Yale pharyngeal residue severity rating scale (YPRSRS) by flexible endoscopic evaluation of swallowing, and Eating Assessment Tool (EAT-10) and M.D. Anderson Dysphagia Inventory questionnaire. Twelve patients, with a mean (SD) age of 64.3 (8.2) were recruited. There was no patient dropout with 88.9% overall compliance of training. Maximum expiratory pressure improved by 41% (median 94.5 to 133.5 cmH2O, p = 0.003). There was reduction in Penetration-aspiration scale with thin liquid (median 4 to 3, p = 0.026), and in YPRSRS at pyriform fossa with mildly thick liquid (p = 0.021) and at vallecula with thin liquid (p = 0.034), mildly thick liquid (p = 0.014) and pureed meat congee (p = 0.016). Questionnaire scores did not significantly change statistically. EMST is an easy-to-use and effective exercise therapy to improve airway safety and swallowing function in post-irradiated NPC survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hong Kong Cancer Registry. Overview of Hong Kong Cancer Statistics of 2019. Hong Kong Hospital Authority; Oct 2021. https://www3.ha.org.hk/cancereg. Assessed August 2022.

  2. Au KH, Ngan RKC, Ng AWY, et al. Treatment outcomes of nasopharyngeal carcinoma in modern era after intensity modulated radiotherapy (IMRT) in Hong Kong: a report of 3328 patients (HKNPCSG 1301 study). Oral Oncol. 2018;77:16–21. https://doi.org/10.1016/j.oraloncology.2017.12.004.

    Article  CAS  PubMed  Google Scholar 

  3. Hughes PJ, Scott PM, Kew J, et al. Dysphagia in treated nasopharyngeal cancer. Head Neck. 2000;22(4):393–7. https://doi.org/10.1002/1097-0347(200007)22:4%3c393::AID-HED13%3e3.0.CO;2-2.

    Article  CAS  PubMed  Google Scholar 

  4. Wu CH, Hsiao TY, Ko JY, Hsu MM. Dysphagia after radiotherapy: endoscopic examination of swallowing in patients with nasopharyngeal carcinoma. Ann Otol Rhinol Laryngol. 2000;109(3):320–5. https://doi.org/10.1177/000348940010900315.

    Article  CAS  PubMed  Google Scholar 

  5. Xu B, Boero IJ, Hwang L, et al. Aspiration pneumonia after concurrent chemoradiotherapy for head and neck cancer. Cancer. 2015;121(8):1303–11. https://doi.org/10.1002/cncr.29207.

    Article  PubMed  Google Scholar 

  6. Hutcheson KA, Lewin JS, Barringer DA, et al. Late dysphagia after radiotherapy-based treatment of head and neck cancer. Cancer. 2012;118(23):5793–9. https://doi.org/10.1002/cncr.27631.

    Article  PubMed  Google Scholar 

  7. Awan MJ, Mohamed AS, Lewin JS, et al. Late radiation-associated dysphagia (late-RAD) with lower cranial neuropathy after oropharyngeal radiotherapy: a preliminary dosimetric comparison. Oral Oncol. 2014;50(8):746–52. https://doi.org/10.1016/j.oraloncology.2014.05.003.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fong R, Ward EC, Rumbach AF. Dysphagia after chemo-radiation for nasopharyngeal cancer: a scoping review. World J Otorhinolaryngol Head Neck Surg. 2020;6(1):10–24. https://doi.org/10.1016/j.wjorl.2020.02.005.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Delanian S, Lefaix JL, Pradat PF. Radiation-induced neuropathy in cancer survivors. Radiother Oncol. 2012;105(3):273–82. https://doi.org/10.1016/j.radonc.2012.10.012.

    Article  PubMed  Google Scholar 

  10. Zhao Y, Liang J, Ou H, Zhang J, Huang H, Feng H. Effects of swallowing rehabilitation training with a balloon dilation therapy on the deglutition function and quality of life of patients with dysphagia after radiotherapy for nasopharyngeal carcinoma. Evid Based Complement Alternat Med. 2022;11(2022):7496753. https://doi.org/10.1155/2022/7496753.

    Article  Google Scholar 

  11. Yeh SA, Tang Y, Lui CC, et al. Treatment outcomes and late complications of 849 patients with nasopharyngeal carcinoma treated with radiotherapy alone. Int J Radiat Oncol Biol Phys. 2005;62(3):672–9. https://doi.org/10.1016/j.ijrobp.2004.11.002.

    Article  PubMed  Google Scholar 

  12. Pu D, Lee VHF, Chan KMK, Yuen MTY, Quon H, Tsang RKY. The relationships between radiation dosage and long-term swallowing kinematics and timing in nasopharyngeal carcinoma survivors. Dysphagia. 2022;37(3):612–21. https://doi.org/10.1007/s00455-021-10311-6.

    Article  PubMed  Google Scholar 

  13. Ku PK, Yuen EH, Cheung DM, et al. Early swallowing problems in a cohort of patients with nasopharyngeal carcinoma: Symptomatology and videofluoroscopic findings. Laryngoscope. 2007;117(1):142–6. https://doi.org/10.1097/01.mlg.0000248738.55387.44.

    Article  PubMed  Google Scholar 

  14. Ku PK, Vlantis AC, Leung SF, et al. Laryngopharyngeal sensory deficits and impaired pharyngeal motor function predict aspiration in patients irradiated for nasopharyngeal carcinoma. Laryngoscope. 2010;120(2):223–8. https://doi.org/10.1002/lary.20701.

    Article  PubMed  Google Scholar 

  15. Chang YC, Chen SY, Ting LL, et al. A 2-year follow-up of swallowing function after radiation therapy in patients with nasopharyngeal carcinoma. Arch Phys Med Rehabil. 2011;92(11):1814–9. https://doi.org/10.1016/j.apmr.2011.06.008.

    Article  PubMed  Google Scholar 

  16. Fong R, Rumbach AF, Ward EC. Prevalence and associated impacts of cervical esophageal clearance issues post chemoradiotherapy for nasopharyngeal carcinoma (NPC). Dysphagia. 2020;35(1):99–109. https://doi.org/10.1007/s00455-019-10007-y.

    Article  PubMed  Google Scholar 

  17. Krisciunas GP, Castellano K, McCulloch TM, et al. Impact of compliance on dysphagia rehabilitation in head and neck cancer patients: results from a multi-center clinical trial. Dysphagia. 2017;32(2):327–36. https://doi.org/10.1007/s00455-016-9760-4.

    Article  PubMed  Google Scholar 

  18. Krekeler BN, Rowe LM, Connor NP. Dose in exercise-based dysphagia therapies: a scoping review. Dysphagia. 2021;36(1):1–32. https://doi.org/10.1007/s00455-020-10104-3.

    Article  PubMed  Google Scholar 

  19. Shinn EH, Basen-Engquist K, Baum G, et al. Adherence to preventive exercises and self-reported swallowing outcomes in post-radiation head and neck cancer patients. Head Neck. 2013;35(12):1707–12. https://doi.org/10.1002/hed.23255.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pitts T, Bolser D, Rosenbek J, et al. Impact of expiratory muscle strength training on voluntary cough and swallow function in Parkinson disease. Chest. 2009;135(5):1301–8. https://doi.org/10.1378/chest.08-1389.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wheeler-Hegland KM, Rosenbek JC, Sapienza CM. Submental sEMG and hyoid movement during Mendelsohn maneuver, effortful swallow, and expiratory muscle strength training. J Speech Lang Hear Res. 2008;51(5):1072–87. https://doi.org/10.1044/1092-4388(2008/07-0016).

    Article  PubMed  Google Scholar 

  22. Wheeler KM, Chiara T, Sapienza CM. Surface electromyographic activity of the submental muscles during swallow and expiratory pressure threshold training tasks. Dysphagia. 2007;22(2):108–16. https://doi.org/10.1007/s00455-006-9061-4.

    Article  PubMed  Google Scholar 

  23. Plowman EK, Tabor-Gray L, Rosado KM, et al. Impact of expiratory strength training in amyotrophic lateral sclerosis: results of a randomized, sham-controlled trial. Muscle Nerve. 2019;59(1):40–6. https://doi.org/10.1002/mus.26292.

    Article  PubMed  Google Scholar 

  24. Moon JH, Jung JH, Won YS, Cho HY, Cho K. Effects of expiratory muscle strength training on swallowing function in acute stroke patients with dysphagia. J Phys Ther Sci. 2017;29(4):609–12. https://doi.org/10.1589/jpts.29.609.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hutcheson KA, Barrow MP, Plowman EK, et al. Expiratory muscle strength training for radiation-associated aspiration after head and neck cancer: a case series. Laryngoscope. 2018;128(5):1044–51. https://doi.org/10.1002/lary.26845.

    Article  PubMed  Google Scholar 

  26. Rosenbek JC, Robbins JA, Roecker EB, Coyle JL, Wood JL. A penetration-aspiration scale. Dysphagia. 1996;11:93–8. https://doi.org/10.1007/BF00417897.

    Article  CAS  PubMed  Google Scholar 

  27. Neubauer PD, Rademaker AW, Leder SB. The yale pharyngeal residue severity rating scale: an anatomically defined and image-based tool. Dysphagia. 2015;30(5):521–8. https://doi.org/10.1007/s00455-015-9631-4.

    Article  PubMed  Google Scholar 

  28. Belafsky PC, Mouadeb DA, Rees CJ, et al. Validity and reliability of the Eating Assessment Tool (EAT-10). Ann Otol Rhinol Laryngol. 2008;117(12):919–24. https://doi.org/10.1177/000348940811701210.

    Article  PubMed  Google Scholar 

  29. Chen AY, Frankowski R, Bishop-Leone J, et al. The development and validation of a dysphagia-specific quality-of-life questionnaire for patients with head and neck cancer: the M. D. Anderson dysphagia inventory. Arch Otolaryngol Head Neck Surg. 2001;127(7):870–6.

    CAS  PubMed  Google Scholar 

  30. Cichero JA, Lam P, Steele CM, et al. Development of international terminology and definitions for texture-modified foods and thickened fluids used in dysphagia management: the IDDSI framework. Dysphagia. 2017;32(2):293–314. https://doi.org/10.1007/s00455-016-9758-y.

    Article  PubMed  Google Scholar 

  31. Wallace S, McLaughlin C, Clayton J, et al. Fibreoptic Endoscopic evaluation of Swallowing (FEES): The role of speech and language therapy. London: Royal College of Speech and Language Therapists, Position paper; 2020.

    Google Scholar 

  32. Robbins J, Coyle J, Rosenbek J, et al. Differentiation of normal and abnormal airway protection during swallowing using the penetration-aspiration scale. Dysphagia Fall. 1999;14(4):228–32. https://doi.org/10.1007/PL00009610.

    Article  CAS  Google Scholar 

  33. Gil Obando LM, López López A, Avila CL. Normal values of the maximal respiratory pressures in healthy people older than 20 years old in the city of Manizales - Colombia. Colomb Med (Cali). 2012;43(2):119–25.

    Article  PubMed  Google Scholar 

  34. Plowman EK, Watts SA, Tabor L, et al. Impact of expiratory strength training in amyotrophic lateral sclerosis. Muscle Nerve. 2016;54:48–53. https://doi.org/10.1002/mus.24990.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hegland KW, Davenport PW, Brandimore AE, Singletary FF, Troche MS. Rehabilitation of swallowing and cough functions following stroke: an expiratory muscle strength training trial. Arch Phys Med Rehabil. 2016;97:1345–51. https://doi.org/10.1016/j.apmr.2016.03.027.

    Article  PubMed  Google Scholar 

  36. Martin M, Lefaix J, Delanian S. TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target? Int J Radiat Oncol Biol Phys. 2000;47(2):277–90. https://doi.org/10.1016/S0360-3016(00)00435-1.

    Article  CAS  PubMed  Google Scholar 

  37. Wall LR, Ward EC, Cartmill B, Hill AJ, Porceddu SV. Adherence to a prophylactic swallowing therapy program during (chemo) radiotherapy: impact of service-delivery model and patient factors. Dysphagia. 2017;32(2):279–92. https://doi.org/10.1007/s00455-016-9757-z.

    Article  PubMed  Google Scholar 

  38. Hutcheson KA, Barrow MP, Warneke CL, et al. Cough strength and expiratory force in aspirating and nonaspirating postradiation head and neck cancer survivors. Laryngoscope. 2018;128(7):1615–21. https://doi.org/10.1002/lary.26986.

    Article  PubMed  Google Scholar 

  39. Park JH, Kang SW, Lee SC, Choi WA, Kim DH. How respiratory muscle strength correlates with cough capacity in patients with respiratory muscle weakness. Yonsei Med J. 2010;51(3):392–7. https://doi.org/10.3349/ymj.2010.51.3.392.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mancopes R, Smaoui S, Steele CM. Effects of expiratory muscle strength training on videofluoroscopic measures of swallowing: a systematic review. Am J Speech Lang Pathol. 2020;29(1):335–56. https://doi.org/10.1044/2019_AJSLP-19-00107.

    Article  PubMed  Google Scholar 

  41. Troche MS, Okun MS, Rosenbek JC, et al. Aspiration and swallowing in Parkinson disease and rehabilitation with EMST: a randomized trial. Neurology. 2010;75(21):1912–9. https://doi.org/10.1212/WNL.0b013e3181fef115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Park JS, Oh DH, Chang MY, Kim KM. Effects of expiratory muscle strength training on oropharyngeal dysphagia in subacute stroke patients: a randomised controlled trial. J Oral Rehabil. 2016;43(5):364–72. https://doi.org/10.1111/joor.12382.

    Article  CAS  PubMed  Google Scholar 

  43. Matsuo K, Palmer JB. Anatomy and physiology of feeding and swallowing: normal and abnormal. Phys Med Rehabil Clin N Am. 2008;19(4):691–707. https://doi.org/10.1016/j.pmr.2008.06.001.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yanagisawa Y, Matsuo Y, Shuntoh H, Mitamura M, Horiuchi N. Change in tongue morphology in response to expiratory resistance loading investigated by magnetic resonance imaging. J Phys Ther Sci. 2013;25(6):667–9. https://doi.org/10.1589/jpts.25.667.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hutcheson KA, Hammer MJ, Rosen SP, Jones CA, McCulloch TM. Expiratory muscle strength training evaluated with simultaneous high-resolution manometry and electromyography. Laryngoscope. 2017;127(4):797–804. https://doi.org/10.1002/lary.26397.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SWC, KHVL, KCJM: conceptualization. SWC, KHVL, KCJM, SYIW, YLL, KMI, YWL: methodology and data collection. SWC: formal analysis. SWC: writing—original draft preparation. SWC, ACLW: writing—review and editing. ACLW, KHVL, KWY: supervision.

Corresponding author

Correspondence to Siu Woon Cheng.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose.

Informed Consent

Informed consent was taken from every participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1 Penetration aspiration scale

Category

Score

Description

Normal

1

Material does not enter the airway

Penetration

2

Material enters the airway, remains above the vocal folds, and is ejected from the airway

3

Material enters the airway, remains above the vocal folds, and is not ejected from the airway

4

Material enters the airway, contacts the vocal folds, and is ejected from the airway

5

Material enters the airway, contacts the vocal folds, and is not ejected from the airway

Aspiration

6

Material enters the airway, passes below the vocal folds and is ejected out of the airway

7

Material enters the airway, passes below the vocal folds, and is not ejected out of the airway despite effort

8

Material enters the airway, passes below the vocal folds, and no effort is made to eject

Appendix 2 Yale pharyngeal residue severity rating scale, vallecula

Score

Severity

Residue %

Description

1

None

0

No residue

2

Trace

1–5

Trace coating of the mucosa

3

Mild

5–25

Epiglottic ligament visible

4

Moderate

25–50

Epiglottic ligament covered

5

Severe

 > 50

Filled to epiglottic rim

Appendix 3 Yale pharyngeal residue severity rating scale, pyriform fossa

Score

Severity

Residue %

Description

1

None

0

No residue

2

Trace

1–5

Trace coating of the mucosa

3

Mild

5–25

Up wall to quarter full

4

Moderate

25–50

Up wall to half full

5

Severe

 > 50

Filled to aryepiglottic fold

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S.W., Leung, K.H.V., Mok, K.C.J. et al. Improvement in Swallowing Function in Patients with Previous Irradiation for Nasopharyngeal Carcinoma by Expiratory Muscle Strength Training. Dysphagia 39, 129–139 (2024). https://doi.org/10.1007/s00455-023-10600-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-023-10600-2

Keywords

Navigation