Skip to main content

Advertisement

Log in

Effects of Food and Liquid Properties on Swallowing Physiology and Function in Adults

  • Review
  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Foods and liquids have properties that are often modified as part of clinical dysphagia management to promote safe and efficient swallowing. However, recent studies have questioned whether this practice is supported by the evidence. To address this, a scoping review was conducted to answer the question: “Can properties of food and liquids modify swallowing physiology and function in adults?” Online search in six databases yielded a set of 4235 non-duplicate articles. Using COVIDENCE software, two independent reviewers screened the articles by title and abstract, and 229 full-text articles were selected for full-text review. One-hundred eleven studies met the inclusion criteria for qualitative synthesis and assessment of risk of bias. Three randomized controlled trials and 108 non-randomized studies were analyzed. Large amounts of variability in instrumental assessment, properties of food and liquids, and swallowing measures were found across studies. Sour, sweet, and salty taste, odor, carbonation, capsaicin, viscosity, hardness, adhesiveness, and cohesiveness were reported to modify the oral and pharyngeal phase of swallowing in both healthy participants and patients with dysphagia. Main swallow measures modified by properties of food and liquids were penetration/aspiration, oral transit time, lingual pressures, submental muscle contraction, oral and pharyngeal residue, hyoid and laryngeal movement, pharyngeal and upper esophageal sphincter pressures, and total swallow duration. The evidence pooled in this review supports the clinical practice of food texture and liquid consistency modification in the management of dysphagia with the caveat that all clinical endeavors must be undertaken with a clear rationale and patient-specific evidence that modifying food or liquid benefits swallow safety and efficiency while maintaining quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gonzalez-Fernandez M, Ottenstein L, Atanelov L, Christian AB. Dysphagia after stroke: an overview. Curr Phys Med Rehabil Rep. 2013;1(3):187–96. https://doi.org/10.1007/s40141-013-0017-y.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Christmas C, Rogus-Pulia N. Swallowing disorders in the older population. J Am Geriatr Soc. 2019;67(12):2643–9. https://doi.org/10.1111/jgs.16137.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rogus-Pulia N, Wirth R, Sloane P. Dysphagia in frail older persons: making the most of current knowledge. J Am Med Dir Assoc. 2018;19(9):736–40. https://doi.org/10.1016/j.jamda.2018.07.018.

    Article  PubMed  Google Scholar 

  4. Barczi S, Sullivan P, Robbins J. How should dysphagia care of older adults differ? Establishing optimal practice patterns. Semin Speech Lang. 2000;21(4):347–61. https://doi.org/10.1055/s-2000-8387.

    Article  CAS  PubMed  Google Scholar 

  5. Aslam M, Vaezi M. Dysphagia in the elderly. Gastroenterol Hepatol (N Y). 2013;9(12):784–95.

    PubMed  Google Scholar 

  6. Humbert IA, Robbins J. Dysphagia in the elderly. Phys Med Rehabil Clin N Am. 2008;19(4):853–66. https://doi.org/10.1016/j.pmr.2008.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sakai K, et al. Submental muscle activity and its role in diagnosing sarcopenic dysphagia. Clin Interv Aging. 2020;15:1991–9. https://doi.org/10.2147/CIA.S278793.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Robbins J, Hamilton J, Lof G, Kempster G. Oropharyngeal swallowing in normal adults of different ages. Gastroenterology. 1992;103(3):823–9. https://doi.org/10.1016/0016-5085(92)90013-O.

    Article  CAS  PubMed  Google Scholar 

  9. Robbins J, Levine R, Wood J, Roecker EB, Luschei E. Age effects on lingual pressure generation as a risk factor for dysphagia. J Gerontol A. 1995;50(5):M257–62. https://doi.org/10.1093/gerona/50a.5.m257.

    Article  CAS  Google Scholar 

  10. Nicosia MA, et al. Age effects on the temporal evolution of isometric and swallowing pressure. J Gerontol A. 2000;55(11):M634–40. https://doi.org/10.1093/gerona/55.11.m634.

    Article  CAS  Google Scholar 

  11. Rogus-Pulia N, Robbins J. Approaches to the rehabilitation of dysphagia in acute poststroke patients. Semin Speech Lang. 2013;34(03):154–69. https://doi.org/10.1055/s-0033-1358368.

    Article  PubMed  Google Scholar 

  12. Rogus-Pulia N, Malandraki G, Johnson S, Robbins J. Understanding dysphagia in dementia: the present and the future. Curr Phys Med Rehabil Rep. 2015;3(1):86–97. https://doi.org/10.1007/s40141-015-0078-1.

    Article  Google Scholar 

  13. Ciucci M, Hoffmeister J, Wheeler-Hegland K. Management of dysphagia in acquired and progressive neurologic conditions. Semin Speech Lang. 2019;40(1098–9056):203–12. https://doi.org/10.1055/s-0039-1688981.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ciucci M, et al. Early identification and treatment of communication and swallowing deficits in Parkinson disease. Semin Speech Lang. 2013;34(1098–9056):185–202. https://doi.org/10.1055/s-0033-1358367.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Perry B, Stipancic K, Martino R, Plowman E, Green J. Biomechanical biomarkers of tongue impairment during swallowing in persons diagnosed with amyotrophic lateral sclerosis. Dysphagia. 2021;36(1):147–56. https://doi.org/10.1007/s00455-020-10116-z.

    Article  PubMed  Google Scholar 

  16. Mittal B, et al. Swallowing dysfunction—preventative and rehabilitation strategies in patients with head-and-neck cancers treated with surgery, radiotherapy, and chemotherapy: a critical review. Int J Radiat Oncol Biol Phys. 2003;57(5):1219–30. https://doi.org/10.1016/S0360-3016(03)01454-8.

    Article  PubMed  Google Scholar 

  17. Logemann JA. Dysphagia—evaluation and treatment. Folia Phoniatr Logop. 1995;47(3):140–64. https://doi.org/10.1159/000266348.

    Article  CAS  PubMed  Google Scholar 

  18. Logemann JA. Rehabilitation of oropharyngeal swallowing disorders. Acta Otorhinolaryngol Belg. 1994;48(2):207–15.

    CAS  PubMed  Google Scholar 

  19. Clave P, et al. The effect of bolus viscosity on swallowing function in neurogenic dysphagia. Aliment Pharmacol Ther. 2006;24(9):1385–94. https://doi.org/10.1111/j.1365-2036.2006.03118.x.

    Article  CAS  PubMed  Google Scholar 

  20. Rofes L, Arreola V, Mukherjee R, Swanson J, Clave P. The effects of a xanthan gum-based thickener on the swallowing function of patients with dysphagia. Aliment Pharmacol Ther. 2014;39(10):1169–79. https://doi.org/10.1111/apt.12696.

    Article  CAS  PubMed  Google Scholar 

  21. Newman R, Vilardell N, Clave P, Speyer R. Effect of bolus viscosity on the safety and efficacy of swallowing and the kinematics of the swallow response in patients with oropharyngeal dysphagia: white paper by the European Society for Swallowing Disorders (ESSD). Dysphagia. 2016;31(2):232–49. https://doi.org/10.1007/s00455-016-9696-8.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bolivar-Prados M, et al. Effect of a gum-based thickener on the safety of swallowing in patients with poststroke oropharyngeal dysphagia. Neurogastroenterol Motil. 2019. https://doi.org/10.1111/nmo.13695.

    Article  PubMed  PubMed Central  Google Scholar 

  23. O’Keeffe ST. Use of modified diets to prevent aspiration in oropharyngeal dysphagia: is current practice justified? BMC Geriatr. 2018;18(1):167. https://doi.org/10.1186/s12877-018-0839-7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Swan K, Speyer R, Heijnen BJ, Wagg B, Cordier R. Living with oropharyngeal dysphagia: effects of bolus modification on health-related quality of life—a systematic review. Qual Life Res. 2015;24(10):2447–56. https://doi.org/10.1007/s11136-015-0990-y.

    Article  PubMed  Google Scholar 

  25. Martino R, Foley N, Bhogal S, Diamant N, Speechley M, Teasell R. Dysphagia after stroke: incidence, diagnosis, and pulmonary complications. Stroke. 2005;36(12):2756–63. https://doi.org/10.1161/01.STR.0000190056.76543.eb.

    Article  PubMed  Google Scholar 

  26. Roden DF, Altman KW. Causes of dysphagia among different age groups a systematic review of the literature. Otolaryngol Clin North Am. 2013;46(6):965. https://doi.org/10.1016/j.otc.2013.08.008.

    Article  PubMed  Google Scholar 

  27. Kalf JG, de Swart BJ, Bloem BR, Munneke M. Prevalence of oropharyngeal dysphagia in Parkinson’s disease: a meta-analysis. Parkinsonism Relat Disord. 2012;18(4):311–5. https://doi.org/10.1016/j.parkreldis.2011.11.006.

    Article  CAS  PubMed  Google Scholar 

  28. Chen JEL. Food oral processing. Fundamentals of eating and sensory perception. New York: Wiley; 2012.

    Book  Google Scholar 

  29. Cichero J. Age-related changes to eating and swallowing impact frailty: aspiration, choking risk, modified food texture and autonomy of choice. Geriatrics (Basel). 2018. https://doi.org/10.3390/geriatrics3040069.

    Article  PubMed  Google Scholar 

  30. Kilcast D. Instrumental assessment of food sensory quality. A practical guide. Philadelphia: Woodhead Publishing Limited; 2013.

    Book  Google Scholar 

  31. Organization IS (2008) ISO 5492:2008. Sensory analysis—vocabulary. https://www.iso.org/obp/ui/#iso:std:iso:5492:ed-2:v1:en

  32. Loret C. Using sensory properties of food to trigger swallowing: a review. Crit Rev Food Sci Nutr. 2015;55(1):140–5. https://doi.org/10.1080/10408398.2011.649810.

    Article  CAS  PubMed  Google Scholar 

  33. Steele CM, et al. The influence of food texture and liquid consistency modification on swallowing physiology and function: a systematic review. Dysphagia. 2015. https://doi.org/10.1007/s00455-014-9578-x.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Flynn E, Smith CH, Walsh CD, Walshe M. Modifying the consistency of food and fluids for swallowing difficulties in dementia. Cochrane Database Sys Rev. 2018. https://doi.org/10.1002/14651858.CD011077.pub2.

    Article  Google Scholar 

  35. Moher D, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340: c869. https://doi.org/10.1136/bmj.c869.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sterne JAC, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng H-Y, Corbett MS, Eldridge SM, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019. https://doi.org/10.1002/14651858.CD201601.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Sterne, et al. ROBINS-I: a tool for assessing risk of bias in non-randomized studies of interventions. BMJ. 2016;355:i4919.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Logemann JA, et al. A randomized study of three interventions for aspiration of thin liquids in patients with dementia or Parkinson’s disease. J Speech Lang Hear Res. 2008;51(1):173–83. https://doi.org/10.1044/1092-4388(2008/013).

    Article  PubMed  Google Scholar 

  39. Pauloski BR, et al. Effects of enhanced bolus flavors on oropharyngeal swallow in patients treated for head and neck cancer. Head Neck. 2013;35(8):1124–31. https://doi.org/10.1002/hed.23086.

    Article  PubMed  Google Scholar 

  40. Ortega O, Rofes L, Martin A, Arreola V, Lopez I, Clave P. A comparative study between two sensory stimulation strategies after two weeks treatment on older patients with oropharyngeal dysphagia. Dysphagia. 2016;31(5):706–16. https://doi.org/10.1007/s00455-016-9736-4.

    Article  PubMed  Google Scholar 

  41. Murakami K, et al. Coordination of tongue pressure production, hyoid movement, and suprahyoid muscle activity during squeezing of gels. Archiv Oral Biol. 2020;111:104631. https://doi.org/10.1016/j.archoralbio.2019.104631.

    Article  Google Scholar 

  42. Murakami K, et al. Effect of fracture properties of gels on tongue pressure during different phases of squeezing and swallowing. J Text Stud. 2021;52(1745–4603):303–13. https://doi.org/10.1111/jtxs.12593.

    Article  Google Scholar 

  43. Hori K, et al. Comparison of mechanical analyses and tongue pressure analyses during squeezing and swallowing of gels. Food Hydrocolloids. 2015;44:145–55. https://doi.org/10.1016/j.foodhyd.2014.09.029.

    Article  CAS  Google Scholar 

  44. Ishihara S, Nakauma M, Funami T, Tanaka T, Nishinari K, Kohyama K. Electromyography during oral processing in relation to mechanical and sensory properties of soft gels. J Text Stud. 2011;42(4):254–67. https://doi.org/10.1111/j.1745-4603.2010.00272.x.

    Article  Google Scholar 

  45. Moritaka H, Nakazawa F. Flow velocity of a bolus in the pharynx and rheological properties of agar and gelatin. J Text Stud. 2010;41(2):139–52. https://doi.org/10.1111/j.1745-4603.2010.00218.x.

    Article  Google Scholar 

  46. Inoue Y, Sasai M, Shiga S, Moritaka H. Effects of gel amount and mastication on the velocity of agar and gelatin gels passing through the Pharynx. J Jpn Soc Food Sci Technol (Jpn). 2009;56(5):261–70. https://doi.org/10.3136/nskkk.56.261.

    Article  Google Scholar 

  47. Yokoyama S, et al. Tongue pressure modulation for initial gel consistency in a different oral strategy. PLoS ONE. 2014;9(3): e91920. https://doi.org/10.1371/journal.pone.0091920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Park D, Shin CM, Ryu JS. Effect of different viscosities on pharyngeal pressure during swallowing: a study using high-resolution manometry. Arch Phys Med Rehabil. 2017;98(3):487–94. https://doi.org/10.1016/j.apmr.2016.07.013.

    Article  PubMed  Google Scholar 

  49. Matsuo K, Kawase S, Wakimoto N, Iwatani K, Masuda Y, Ogasawara T. Effect of viscosity on food transport and swallow initiation during eating of two-phase food in normal young adults: a pilot study. Dysphagia. 2013;28(1):63–8. https://doi.org/10.1007/s00455-012-9413-1.

    Article  PubMed  Google Scholar 

  50. Kim YTT, Ogoshi H. Effect of added salt on the ease of swallow and masticatory muscle activity for minced pork. Jpn Soc Cond Sci. 2010;43(5):294–300. https://doi.org/10.11402/cookeryscience.43.294.

    Article  Google Scholar 

  51. Ding R, Logemann J, Larson C, Rademaker A. The effects of taste and consistency on swallow physiology in younger and older healthy individuals: a surface electromyographic study. J Speech Lang Hear Res. 2003;46(4):977–89. https://doi.org/10.1044/1092-4388(2003/076).

    Article  PubMed  Google Scholar 

  52. Shaker R, et al. Effect of aging and bolus variables on pharyngeal and upper esophageal sphincter motor function. Am J Physiol. 1993;264(0002–9513):G427–32. https://doi.org/10.1152/ajpgi.1993.264.3.G427.

    Article  CAS  PubMed  Google Scholar 

  53. Pouderoux P, Kahrilas P. Deglutitive tongue force modulation by volition, volume, and viscosity in humans. Gastroenterology. 1995;108(5):1418–26. https://doi.org/10.1016/0016-5085(95)90690-8.

    Article  CAS  PubMed  Google Scholar 

  54. Raut VV, McKee GJ, Johnston BT. Effect of bolus consistency on swallowing–does altering consistency help? Eur Arch Otorhinolaryngol. 2001;258(0937–4477):49–53. https://doi.org/10.1007/s004050000301.

    Article  CAS  PubMed  Google Scholar 

  55. Taniguchi H, Tsukada T, Ootaki S, Yamada Y, Inoue M. Correspondence between food consistency and suprahyoid muscle activity, tongue pressure, and bolus transit times during the oropharyngeal phase of swallowing. J Appl Physiol. 2008;105(3):791–9. https://doi.org/10.1152/japplphysiol.90485.2008.

    Article  PubMed  Google Scholar 

  56. Tsukada T, Taniguchi H, Ootaki S, Yamada Y, Inoue M. “Effects of food texture and head posture on oropharyngeal swallowing,” (in eng). J Appl Physiol. 2009;106(6):1848–57. https://doi.org/10.1152/japplphysiol.91295.2008.

    Article  PubMed  Google Scholar 

  57. Bülow M, Olsson R, Ekberg O. “Videoradiographic analysis of how carbonated thin liquids and thickened liquids affect the physiology of swallowing in subjects with aspiration on thin liquids,” (in eng). Acta Radiol. 2003. https://doi.org/10.1034/j.1600-0455.2003.00100.x.

    Article  PubMed  Google Scholar 

  58. Lee K, Kim W, Kim E, Lee J. Is swallowing of all mixed consistencies dangerous for penetration-aspiration? Am J Phys Med Rehabil. 2012;91(3):187–92. https://doi.org/10.1097/PHM.0b013e318238a0e3.

    Article  PubMed  Google Scholar 

  59. Matsuo K, Yokoyama M, Gonzalez-Fern M, Saitoh E, Kagaya H, Baba M, et al. Effects of Food Consistencies and Mastication on Bolus Transport and Swallow Initiation in Individuals with Hemispheric Stroke. J Neurol Neurophysiol. 2015. https://doi.org/10.4172/2155-9562.1000269.

    Article  Google Scholar 

  60. Saitoh E, Shibata S, Matsuo K, Baba M, Fujii W, Palmer JB. Chewing and food consistency: effects on bolus transport and swallow initiation. Dysphagia. 2007. https://doi.org/10.1007/s00455-006-9060-5.

    Article  PubMed  Google Scholar 

  61. Stachler R, et al. Swallowing of bolus types by postsurgical head and neck cancer patients. Head Neck. 1994;16(5):413–9. https://doi.org/10.1002/hed.2880160504.

    Article  CAS  PubMed  Google Scholar 

  62. Ayala K, Logemann J. Effects of altered sensory bolus characteristics and repeated swallows in Healthy young and elderly subjects. J Med Speech Lang Pathol Orig. 2010;18(3):34–58.

    Google Scholar 

  63. Bhattacharyya N, Kotz T, Fau-Shapiro J, Shapiro J. The effect of bolus consistency on dysphagia in unilateral vocal cord paralysis. Otolaryngol Head Neck Surg. 2003. https://doi.org/10.1016/s0194-5998(03)00633-8.

    Article  PubMed  Google Scholar 

  64. Bisch EM, Logemann J, Fau-Rademaker AW, Rademaker A, Fau-Kahrilas PJ, Fau-Lazarus CL, Lazarus CL. Pharyngeal effects of bolus volume, viscosity, and temperature in patients with dysphagia resulting from neurologic impairment and in normal subjects. J Speech Hear Res. 1994. https://doi.org/10.1044/jshr.3705.1041.

    Article  PubMed  Google Scholar 

  65. Butler S, Stuart A, Case L, Rees C, Vitolins M, Kritchevsky S. Effects of liquid type, delivery method, and bolus volume on penetration-aspiration scores in healthy older adults during flexible endoscopic evaluation of swallowing. Ann Otol Rhinol Laryngol. 2011;120(5):288–95. https://doi.org/10.1177/000348941112000502.

    Article  PubMed  Google Scholar 

  66. Butler S, Stuart A, Castell D, Russell G, Koch K, Kemp S. Effects of age, gender, bolus condition, viscosity, and volume on pharyngeal and upper esophageal sphincter pressure and temporal measurements during swallowing. J Speech Lang Hear Res. 2009;52(1):240–53. https://doi.org/10.1044/1092-4388(2008/07-0092).

    Article  PubMed  Google Scholar 

  67. Chi-Fishman G, Sonies B. Effects of systematic bolus viscosity and volume changes on hyoid movement kinematics. Dysphagia. 2002;17(4):278–87. https://doi.org/10.1007/s00455-002-0070-7.

    Article  PubMed  Google Scholar 

  68. Dantas RO, et al. “Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing,” (in eng). Am J Physiol. 1990;258(0002–9513):G675–81. https://doi.org/10.1152/ajpgi.1990.258.5.G675.

    Article  CAS  PubMed  Google Scholar 

  69. Diniz P, Vanin G, Xavier R, Parente M. Reduced incidence of aspiration with spoon-thick consistency in stroke patients. Nutrition. 2009;24(3):414–8. https://doi.org/10.1177/0884533608329440.

    Article  Google Scholar 

  70. Gingrich L, Stierwalt J, Hageman C, LaPointe L. Lingual propulsive pressures across consistencies generated by the anteromedian and posteromedian tongue by healthy young adults. J Speech Lang Hear Res. 2012;55(3):960–72. https://doi.org/10.1044/1092-4388(2011/10-0357).

    Article  PubMed  Google Scholar 

  71. Hamlet S, et al. “Normal adult swallowing of liquid and viscous material: scintigraphic data on bolus transit and oropharyngeal residues,” (in eng). Dysphagia. 1996;11(1):41–7. https://doi.org/10.1007/BF00385799.

    Article  CAS  PubMed  Google Scholar 

  72. Hiss SG, Strauss M, Treole K, Stuart A, Boutilier S. Effects of age, gender, bolus volume, bolus viscosity, and gustation on swallowing apnea onset relative to lingual bolus propulsion onset in normal adults. J Speech Lang Hear Res. 2004;47(3):572–83. https://doi.org/10.1044/1092-4388(2004/044).

    Article  PubMed  Google Scholar 

  73. Iguchi T, Ohkubo M, Sugiyama T, Hori K, Ono T, Ishida R. Effects of water viscosity and tongue ingestion site on tongue pressure during food bolus propulsion. J Oral Rehabil. 2018;45(5):371–7. https://doi.org/10.1111/joor.12623.

    Article  CAS  PubMed  Google Scholar 

  74. Humbert IA, et al. “Swallowing kinematic differences across frozen, mixed, and ultrathin liquid boluses in healthy adults: age, sex, and normal variability,” (in eng). J Speech Lang Hear Res. 2018;61(1558–9102):1544–59. https://doi.org/10.1044/2018_JSLHR-S-17-0417.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Inamoto Y, et al. "The effect of bolus viscosity on laryngeal closure in swallowing: kinematic analysis using 320-row area detector CT. Dysphagia. 2013;28(1):33–42. https://doi.org/10.1007/s00455-012-9410-4.

    Article  PubMed  Google Scholar 

  76. Larsson V, Torisson G, Bulow M, Londos E. Effects of carbonated liquid on swallowing dysfunction in dementia with Lewy bodies and Parkinson’s disease dementia (in English). Clin Interv Aging. 2017;12:1215–22. https://doi.org/10.2147/cia.s140389.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Kuhlemeier KV, Palmer J, Fau-Rosenberg D, Rosenberg D. Effect of liquid bolus consistency and delivery method on aspiration and pharyngeal retention in dysphagia patients. Dysphagia. 2001. https://doi.org/10.1007/s004550011003.

    Article  PubMed  Google Scholar 

  78. Leder S, Judson B, Sliwinski E, Madson L. Promoting safe swallowing when puree is swallowed without aspiration but thin liquid is aspirated: nectar is enough. Dysphagia. 2013;28(1):58–62. https://doi.org/10.1007/s00455-012-9412-2.

    Article  PubMed  Google Scholar 

  79. Lee S, Yoo J, Kim M, Ryu J. Changes of timing variables in swallowing of boluses with different viscosities in patients with dysphagia. Arch Phys Med Rehabil. 2013;94(1):120–6. https://doi.org/10.1016/j.apmr.2012.07.016.

    Article  PubMed  Google Scholar 

  80. Leonard R, White C, McKenzie S, Belafsky P. Effects of bolus rheology on aspiration in patients with Dysphagia. J Acad Nutr Diet. 2014;114(4):590–4. https://doi.org/10.1016/j.jand.2013.07.037.

    Article  PubMed  Google Scholar 

  81. Miller JL, Watkin KL. The influence of bolus volume and viscosity on anterior lingual force during the oral stage of swallowing. Dysphagia. 1996;11(2):117–24. https://doi.org/10.1007/BF00417901.

    Article  CAS  PubMed  Google Scholar 

  82. Nagy A, Molfenter SM, Péladeau-Pigeon M, Stokely S, Steele CM. The effect of bolus consistency on hyoid velocity in healthy swallowing. Dysphagia. 2015;30(4):445–51. https://doi.org/10.1007/s00455-015-9621-6.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Okuno K, Tachimura T, Sakai T. Influences of swallowing volume and viscosity on regulation of levator veli palatini muscle activity during swallowing. J Oral Rehabil. 2013;40(9):657–63. https://doi.org/10.1111/joor.12071.

    Article  CAS  PubMed  Google Scholar 

  84. Omari TI, Dejaeger E, Fau-Tack J, Fau-Van Beckevoort D, Fau-Rommel N, Rommel N. “Effect of bolus volume and viscosity on pharyngeal automated impedance manometry variables derived for broad Dysphagia patients,” (in eng). Dysphagia. 2012;28(1432–0460):146–52. https://doi.org/10.1007/s00455-012-9423-z.

    Article  PubMed  Google Scholar 

  85. Reimers-Neils L, Logemann J, Larson C. “Viscosity effects on EMG activity in normal swallow,” (in eng). Dysphagia. 1994;9(2):101–6. https://doi.org/10.1007/BF00714596.

    Article  CAS  PubMed  Google Scholar 

  86. Rofes L, Arreola V, Martin A, Clavé P. Natural capsaicinoids improve swallow response in older patients with oropharyngeal dysphagia. Gut. 2013;62(9):1280–7. https://doi.org/10.1136/gutjnl-2011-300753.

    Article  PubMed  Google Scholar 

  87. Steele C, Bailey G, Molfenter S. “Tongue pressure modulation during swallowing: water versus nectar-thick liquids,” (in eng). J Speech Lang Hear Res. 2010;53(2):273–83. https://doi.org/10.1044/1092-4388(2009/09-0076).

    Article  PubMed  Google Scholar 

  88. Steele CM, Molfenter SM, Peladeau-Pigeon M, Polacco RC, Yee C. Variations in tongue-palate swallowing pressures when swallowing xanthan gum-thickened liquids. Dysphagia. 2014;29(6):678–84. https://doi.org/10.1007/s00455-014-9561-6.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Steele C, et al. “Reference values for healthy swallowing across the range from thin to extremely thick liquids,” (in eng). J Speech Lang Hear Res. 2019;62(5):1338–63. https://doi.org/10.1044/2019_jslhr-s-18-0448.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Steele C, et al. “Modulation of tongue pressure according to liquid flow properties in healthy swallowing,” (in eng). J Speech Lang Hear Res. 2019;62(1):22–33. https://doi.org/10.1044/2018_jslhr-s-18-0229.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Steele C, Van Lieshout P. Influence of bolus consistency on lingual behaviors in sequential swallowing. Dysphagia. 2004;19(3):192–206. https://doi.org/10.1007/s00455-004-0006-5.

    Article  PubMed  Google Scholar 

  92. Vilardell N, Rofes L, Arreola V, Speyer R, Clave P. A comparative study between modified starch and xanthan gum thickeners in post-stroke oropharyngeal Dysphagia. Dysphagia. 2016;31(2):169–79. https://doi.org/10.1007/s00455-015-9672-8.

    Article  CAS  PubMed  Google Scholar 

  93. Tsuzuki H, et al. “Effects of bolus consistency and reclining position on kinematic swallowing events in analysis using 320-row area detector computed tomography,” (in eng). J Oral Sci. 2020;62(1880–4926):18–22. https://doi.org/10.2334/josnusd.18-0377.

    Article  CAS  PubMed  Google Scholar 

  94. Wu S, et al. “Effect of changes in bolus viscosity on swallowing muscles in patients with dysphagia after stroke,” (in eng). Chin Med J (Engl). 2018;131(23):2868–70. https://doi.org/10.4103/0366-6999.246071.

    Article  PubMed  Google Scholar 

  95. Bogaardt H, Burger J, Fokkens W, Bennink R. Viscosity is not a parameter of postdeglutitive pharyngeal residue: quantification and analysis with scintigraphy. Dysphagia. 2007;22(2):145–9. https://doi.org/10.1007/s00455-006-9069-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Butler S, Postma G, Fischer E. Effects of viscosity, taste, and bolus volume on swallowing apnea duration of normal adults. Otolaryngol Head Neck Surg. 2004;131(6):860–3. https://doi.org/10.1016/j.otohns.2004.06.706.

    Article  PubMed  Google Scholar 

  97. Kim C, Hsu J, O’Connor M, Weaver A, Brown M, Zinsmeister A. Effect of viscosity on oropharyngeal and esophageal emptying in man. Dig Dis Sci. 1994;39(1):189–92. https://doi.org/10.1007/bf02090081.

    Article  CAS  PubMed  Google Scholar 

  98. Lazarus C, et al. Effects of bolus volume, viscosity, and repeated swallows in nonstroke subjects and stroke patients. Archiv Phys Med Rehabil. 1993;74(10):1066–70. https://doi.org/10.1016/0003-9993(93)90063-G.

    Article  CAS  Google Scholar 

  99. Ferris L, et al. Modulation of pharyngeal swallowing by bolus volume and viscosity. Am J Physiol Gastroint Liver Physiol. 2020;320(1):G43–53. https://doi.org/10.1152/ajpgi.00270.2020.

    Article  CAS  Google Scholar 

  100. Gozzer M, Cola P, Onofri S, Merola B, Silva R. Fiberoptic endoscopic findings of oropharyngeal swallowing of different food consistencies in amyotrophic lateral sclerosis. CoDAS. 2020. https://doi.org/10.1590/2317-1782/20192018216.

    Article  PubMed  Google Scholar 

  101. Ito Y, et al. The effect of bolus consistency on pharyngeal volume during swallowing: kinematic analysis in three dimensions using dynamic Area Detector CT. J Oral Rehabil. 2020;47(10):1287–96. https://doi.org/10.1111/joor.13062.

    Article  PubMed  Google Scholar 

  102. Ortega O, et al. “Therapeutic effect, rheological properties and α-amylase resistance of a new mixed starch and xanthan gum thickener on four different phenotypes of patients with oropharyngeal dysphagia,” (in eng). Nutrients. 2020;12(6):1873. https://doi.org/10.3390/nu12061873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Castell JA, Dalton C, Fau-Castell DO, Castell DO. Effects of body position and bolus consistency on the manometric parameters and coordination of the upper esophageal sphincter and pharynx. Dysphagia. 1990. https://doi.org/10.1007/BF02412685.

    Article  PubMed  Google Scholar 

  104. Mendell D, Logemann J. Temporal sequence of swallow events during the oropharyngeal swallow. J Speech Lang Hear Res. 2007;50(5):1256–71. https://doi.org/10.1044/1092-4388(2007/088).

    Article  PubMed  Google Scholar 

  105. Mozzanica F, et al. Effect of age, sex, bolus volume, and bolus consistency on whiteout duration in healthy subjects during FEES. Dysphagia. 2019;34(2):192–200. https://doi.org/10.1007/s00455-018-9961-0.

    Article  PubMed  Google Scholar 

  106. Dantas RO, Dodds WJ. Effect of bolus volume and consistency on swallow-induced submental and infrahyoid electromyographic activity. Braz J Med Biol Res. 1990;23(1):37–44.

    CAS  PubMed  Google Scholar 

  107. Miura Y, Morita Y, Koizumi H, Shingai T. Effects of taste solutions, carbonation, and cold stimulus on the power frequency content of swallowing submental surface electromyography. Chem Senses. 2009;34(4):325–31. https://doi.org/10.1093/chemse/bjp005.

    Article  PubMed  Google Scholar 

  108. Leow LP, Huckabee ML, Sharma S, Tooley TP. The influence of taste on swallowing apnea, oral preparation time, and duration and amplitude of submental muscle contraction. Chem Senses. 2007;32(2):119–28. https://doi.org/10.1093/chemse/bjl037.

    Article  CAS  PubMed  Google Scholar 

  109. Pelletier CA, Dhanaraj GE. “The effect of taste and palatability on lingual swallowing pressure,” (in eng). Dysphagia. 2006;21:121–8. https://doi.org/10.1007/s00455-006-9020-0.

    Article  PubMed  Google Scholar 

  110. Nagy A, Steele CM, Pelletier CA. Differences in swallowing between high and low concentration taste stimuli. Biomed Res Int. 2014;2014:813084–813084. https://doi.org/10.1155/2014/813084.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Regan J. “Impact of sensory stimulation on pharyngo-esophageal swallowing biomechanics in adults with dysphagia: a high-resolution manometry study,” (in eng). Dysphagia. 2020;35(1432–0460):825–33. https://doi.org/10.1007/s00455-019-10088-9.

    Article  PubMed  Google Scholar 

  112. Gatto AR, et al. Sour taste and cold temperature in the oral phase of swallowing in patients after stroke. CoDAS. 2013;25(2):163–8. https://doi.org/10.1590/s2317-17822013000200012.

    Article  Google Scholar 

  113. Gatto AR, Cola PC, Da Silva RG, Ribeiro PW, Spadotto AA, et al. Influence of thermal and gustatory stimulus in the initiation of the pharyngeal swallow and bolus location instroke. J Stroke Cerebrovasc Dis. 2021;30(4):105349.

    Article  PubMed  Google Scholar 

  114. Oh E, Jee S, Kim B, Lee J, Cho K, Ahn S. A new swallowing supplement for dysphagia in patients with Parkinson’s disease. Neurol Sci. 2021;42(5):1949–58. https://doi.org/10.1007/s10072-020-04730-w.

    Article  PubMed  Google Scholar 

  115. Wahab NA, Jones RD, Huckabee M-L. Effects of olfactory and gustatory stimuli on the biomechanics of swallowing. Physiol Behav. 2011;102(5):485–90. https://doi.org/10.1016/j.physbeh.2010.11.030.

    Article  CAS  PubMed  Google Scholar 

  116. Morishita M, Mori S, Yamagami S, Mizutani M. Effect of carbonated beverages on pharyngeal swallowing in young individuals and elderly inpatients. Dysphagia. 2014;29(2):213–22. https://doi.org/10.1007/s00455-013-9493-6.

    Article  PubMed  Google Scholar 

  117. Moritaka H, et al. Effect of carbon dioxide in carbonated drinks on linguapalatal swallowing pressure. Chem Senses. 2014;39(2):133–42. https://doi.org/10.1093/chemse/bjt062.

    Article  CAS  PubMed  Google Scholar 

  118. Sonja S-K, et al. Effect of capsaicinoids on neurophysiological, biochemical, and mechanical parameters of swallowing function. Neurotherapeutics. 2021;18(2):1360–70. https://doi.org/10.1007/s13311-020-00996-2.

    Article  CAS  Google Scholar 

  119. Pelletier CA, Steele CM. Influence of the perceived taste intensity of chemesthetic stimuli on swallowing parameters given age and genetic taste differences in healthy adult women. J Speech Lang Hear Res. 2014;57(1):46–56. https://doi.org/10.1044/1092-4388(2013/13-0005).

    Article  PubMed  Google Scholar 

  120. Krival K, Bates C. Effects of club soda and ginger brew on linguapalatal pressures in healthy swallowing. Dysphagia. 2012;27(2):228–39. https://doi.org/10.1007/s00455-011-9358-9.

    Article  PubMed  Google Scholar 

  121. Pelletier CA, Lawless HT, Pelletier CA, Lawless HT. Effect of citric acid and citric acid-sucrose mixtures on swallowing in neurogenic oropharyngeal dysphagia. Dysphagia. 2003;18(4):231–41. https://doi.org/10.1007/s00455-003-0013-y.

    Article  PubMed  Google Scholar 

  122. Logemann J, Pauloski B, Colangelo L, Lazarus C, Fujiu M, Kahrilas P. “Effects of a sour bolus on oropharyngeal swallowing measures in patients with neurogenic dysphagia,” (in eng). J Speech Hear Res. 1995;38(3):556–63. https://doi.org/10.1044/jshr.3803.556.

    Article  CAS  PubMed  Google Scholar 

  123. Dietsch AM, Westemeyer RM, Pearson WG, Schultz DH. Genetic taster status as a mediator of neural activity and swallowing mechanics in healthy adults. Front Neurosci Original Res 2019;13

  124. Sdravou K, Walshe M, Dagdilelis L. Effects of carbonated liquids on oropharyngeal swallowing measures in people with neurogenic dysphagia. Dysphagia. 2012;27(2):240–50. https://doi.org/10.1007/s00455-011-9359-8.

    Article  PubMed  Google Scholar 

  125. Yael S-G, et al. Effects of carbonation of liquids on penetration–aspiration and residue management. Eur Arch Oto-Rhino-Laryngol. 2021;278(12):4871–81. https://doi.org/10.1007/s00405-021-06987-z.

    Article  Google Scholar 

  126. Perlman A, Schultz J, VanDaele D. Effects of age, gender, bolus volume, and bolus viscosity on oropharyngeal pressure during swallowing. J Appl Physiol. 1993;75(1):33–7. https://doi.org/10.1152/jappl.1993.75.1.33.

    Article  CAS  PubMed  Google Scholar 

  127. Alves L, Secaf M, Dantas R. Effect of a bitter bolus on oral, pharyngeal and esophageal transit of healthy subjects. Arq Gastroenterol. 2013. https://doi.org/10.1590/s0004-28032013000100007.

    Article  PubMed  Google Scholar 

  128. Alves L, Secaf M, Dantas R. Oral, pharyngeal, and esophageal transit of an acidic bolus in healthy subjects. Esophagus. 2013;10(4):217–22. https://doi.org/10.1007/s10388-013-0389-1.

    Article  Google Scholar 

  129. Alves L, Fabio S, Dantas R. Efeito do Sabor no Trânsito Oral e Faríngeo de Pacientes com Acidente Vascular Cerebral. Revista Neurociências. 2014;22(1):17–21.

    Article  Google Scholar 

  130. Miyaoka Y, Haishima K, Takagi M, Haishima H, Asari J, Yamada Y. Influences of thermal and gustatory characteristics on sensory and motor aspects of swallowing. Dysphagia. 2006;21(1):38–48. https://doi.org/10.1007/s00455-005-9003-6.

    Article  PubMed  Google Scholar 

  131. Lee K, et al. The influence of sour taste on Dysphagia in brain injury: blind study. Ann Rehabil Med. 2012;36(3):365–70. https://doi.org/10.5535/arm.2012.36.3.365.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Dietsch A, Dorris H, Pearson WJ, Dietrich-Burns K, Solomon N. Taste manipulation and swallowing mechanics in trauma-related sensory-based Dysphagia. J Speech Lang Hear Res. 2019;62(8):2703–12. https://doi.org/10.1044/2019_jslhr-s-18-0381.

    Article  PubMed  Google Scholar 

  133. Turkington L, Ward EC, Farrell A, Porter L, Wall LR. Impact of carbonation on neurogenic dysphagia and an exploration of the clinical predictors of a response to carbonation. Int J Lang Commun Disord. 2019;54(3):499–513. https://doi.org/10.1111/1460-6984.12458.

    Article  PubMed  Google Scholar 

  134. Park H, Kim D, Lee S, Park K. “The effect of aging on mastication and swallowing parameters according to the hardness change of solid food,” (in eng). J Texture Stud. 2017;48(5):362–9. https://doi.org/10.1111/jtxs.12249.

    Article  PubMed  Google Scholar 

  135. Dantas R, et al. Effect of swallowed bolus variables on oral and pharyngeal phases of swallowing. Am J Physiol. 1990;258(5 Pt 1):G675–81. https://doi.org/10.1152/ajpgi.1990.258.5.G675.

    Article  CAS  PubMed  Google Scholar 

  136. Pauloski BR, et al. “Effects of enhanced bolus flavors on oropharyngeal swallow in patients treated for head and neck cancer,” (in eng). Head Neck. 2013;35(8):1124–31. https://doi.org/10.1002/hed.23086.

    Article  PubMed  Google Scholar 

  137. Yokoyama S, et al. Tongue pressure modulation for initial gel consistency in a different oral strategy. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0091920.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sugita K, Inoue M, Taniguchi H, Ootaki S, Igarashi A, Yamada Y. Effects of food consistency on tongue pressure during swallowing. J Oral Biosci. 2006;48(4):278–85. https://doi.org/10.1016/S1349-0079(06)80010-1.

    Article  Google Scholar 

  139. Iida Y, Katsumata A, Fujishita M. “Videofluorographic evaluation of mastication and swallowing of Japanese udon noodles and white rice,” (in eng). Dysphagia. 2011;26(3):246–9. https://doi.org/10.1007/s00455-010-9295-z.

    Article  PubMed  Google Scholar 

  140. Palmer P, McCulloch T, Jaffe D, Neel A. “Effects of a sour bolus on the intramuscular electromyographic (EMG) activity of muscles in the submental region,” (in eng). Dysphagia. 2005;20(3):210–7. https://doi.org/10.1007/s00455-005-0017-x.

    Article  PubMed  Google Scholar 

  141. Igarashi A, et al. “Sensory and motor responses of normal young adults during swallowing of foods with different properties and volumes,” (in eng). Dysphagia. 2010;25(3):198–206. https://doi.org/10.1007/s00455-009-9243-y.

    Article  PubMed  Google Scholar 

  142. Kendall KA, Leonard RJ, Fau-McKenzie SW, McKenzie SW. “Accommodation to changes in bolus viscosity in normal deglutition: a videofluoroscopic study,” (in eng). Ann Otol Rhinol Laryngol. 2001;110(0003–4894):1059–65. https://doi.org/10.1177/000348940111001113.

    Article  CAS  PubMed  Google Scholar 

  143. Moritaka H, Nakazawa F. The rheological and swallowing properties of rice starch. Food Sci Technol Res. 2009;15(2):133–40. https://doi.org/10.3136/fstr.15.133.

    Article  CAS  Google Scholar 

  144. Cola P, et al. “Taste and temperature in swallowing transit time after stroke,” (in eng). Cerebrovasc Dis Extra. 2012;2(1):45–51. https://doi.org/10.1159/000339888.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Cola PC, Gatto AR, Silva RG, Spadotto AA, Schelp AO, Henry MA. “The influence of sour taste and cold temperature in pharyngeal transit duration in patients with stroke,” (in eng). Arq Gastroenterol. 2010;47(1):18–21. https://doi.org/10.1590/S0004-28032010000100004.

    Article  PubMed  Google Scholar 

  146. Friedman L, DeMets D, Reboussin D, Granger C. Fundamentals of clinical trials. 5th ed. Switzerland: Springer; 2015.

    Book  Google Scholar 

  147. Martino R, McCulloch T. Therapeutic intervention in oropharyngeal dysphagia. Nat Rev Gastroenterol Hepatol Rev. 2016;13(11):665–79. https://doi.org/10.1038/nrgastro.2016.127.

    Article  Google Scholar 

  148. Sterne JAC, Elbers RG. Reeves BC and the development group for ROBINS-I, Risk Of Bias In Non-randomized Studies of Interventions (ROBINS-I): detailed guidance. 12 October 2016.

  149. Baijens L, et al. “European Society for Swallowing Disorders European Union Geriatric Medicine Society white paper: oropharyngeal dysphagia as a geriatric syndrome,” (in English). Clin Interv Aging Rev. 2016;11:1403–28.

    Article  Google Scholar 

  150. Chen DF. Dysphagia in the hospitalized patient. Hosp Med Clin. 2017;6(1):38–52. https://doi.org/10.1016/j.ehmc.2016.07.004.

    Article  CAS  Google Scholar 

  151. Clave P, et al. “Pathophysiology, relevance and natural history of oropharyngeal dysphagia among older people,” (in eng). Nestle Nutr Inst Workshop Ser. 2012;72:57–66. https://doi.org/10.1159/000339986.

    Article  PubMed  Google Scholar 

  152. Krekeler BN, Broadfoot CK, Johnson S, Connor NP, Rogus-Pulia N. Patient adherence to dysphagia recommendations: a systematic review. Dysphagia. 2018;33(2):173–84. https://doi.org/10.1007/s00455-017-9852-9.

    Article  PubMed  Google Scholar 

  153. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Lancet. 2007;370(9596):1453–7. https://doi.org/10.1016/S0140-6736(07)61602-X.

    Article  Google Scholar 

  154. Collaborative S. STARTED (Standards for Rigor and Transparency in Dysphagia Research). https://dysphagia-standards.netlify.app/app/. Accessed 2 Oct 2022.

  155. Cho H-M, Yoo W, Yoo B. “Effect of NaCl addition on rheological behaviors of commercial gum-based food thickener used for dysphagia diets,” (in eng). Prev Nutr Food Sci. 2015;20(2):137–42. https://doi.org/10.3746/pnf.2015.20.2.137.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Vickers Z, et al. “Relationships among rheological, sensory texture, and swallowing pressure measurements of hydrocolloid-thickened fluids,” (in eng). Dysphagia. 2015;30(6):702–13. https://doi.org/10.1007/s00455-015-9647-9.

    Article  CAS  PubMed  Google Scholar 

  157. Steffe J. Rheological methods in food process engineering. 2nd ed. East Lansing: Freeman Press; 1996.

    Google Scholar 

  158. Sugino S, Tsukada T, Ootaki S, Yuka K, Yamada Y, Inoue M. Effects of food consistency and subject’s posture on the electromyographic activity in the genioglossus muscle in humans. Jpn Soc Stomatognath Funct. 2007;14:13–23.

    Article  Google Scholar 

  159. Sanpei R, et al. “Video-endoscopic comparison of swallowing waxy rice mochi and waxy wheat mochi: improvement of a traditional Japanese food that presents a choking hazard,” (in eng). Biosci Biotechnol Biochem. 2014;78(1347–6947):472–7. https://doi.org/10.1080/09168451.2014.877817.

    Article  CAS  PubMed  Google Scholar 

  160. Yamada T, Matsuo K, Izawa M, Yamada S, Masuda Y, Ogasawara T. “Effects of age and viscosity on food transport and breathing-swallowing coordination during eating of two-phase food in nursing home residents,” (in eng). Geriatr Gerontol Int. 2017;17(11):2171–7. https://doi.org/10.1111/ggi.13056.

    Article  PubMed  Google Scholar 

  161. Kuhlemeier KV, Palmer JB, Rosenberg D. “Effect of liquid bolus consistency and delivery method on aspiration and pharyngeal retention in dysphagia patients,” (in eng). Dysphagia. 2001;16(2):119–22. https://doi.org/10.1007/s004550011003.Dysphagia.

    Article  CAS  PubMed  Google Scholar 

  162. Steele C, van Lieshout P, Pelletier C. The influence of stimulus taste and chemesthesis on tongue movement timing in swallowing. J Speech Lang Hear Res. 2012;55(1):262–75. https://doi.org/10.1044/1092-4388(2011/11-0012).

    Article  PubMed  Google Scholar 

  163. Dafiah P, Swapna N. Variations in the amplitude and duration of hyolaryngeal elevation during swallow: effect of sour and carbonated liquid bolus. Physiol Behav. 2020;224:113028. https://doi.org/10.1016/j.physbeh.2020.113028.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Funding was provided by Beca Igualdad de Oportunidades Fulbright-ANID (BECAS/DOCTORADO EXTRANJERO/56150014) and National Institutes of Health (1K76AG068590).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole M. Rogus-Pulia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña-Chávez, R.E., Schaen-Heacock, N.E., Hitchcock, M.E. et al. Effects of Food and Liquid Properties on Swallowing Physiology and Function in Adults. Dysphagia 38, 785–817 (2023). https://doi.org/10.1007/s00455-022-10525-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00455-022-10525-2

Keywords

Navigation