Skip to main content
Log in

Small Universal Point Sets for k-Outerplanar Graphs

  • Published:
Discrete & Computational Geometry Aims and scope Submit manuscript

Abstract

A point set \(\mathcal{S} \subseteq \mathbb {R}^2\) is universal for a class \(\mathcal G\) of planar graphs if every graph of \(\mathcal{G}\) has a planar straight-line embedding on \(\mathcal{S}\). It is well-known that the integer grid is a quadratic-size universal point set for planar graphs, while the existence of a subquadratic universal point set still remains one of the most fascinating open problems in Graph Drawing. In this paper we make a major step towards a solution for this problem. Motivated by the fact that each point set of size n in general position is universal for the class of n-vertex outerplanar graphs, we concentrate our attention on k-outerplanar graphs. We prove that they admit an \(O(n \log n)\)-size universal point set in two distinct cases, namely when \(k=2\) (2-outerplanar graphs) and when k is unbounded but each outerplanarity level is restricted to be a simple cycle (simply-nested graphs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. The original definition in [10] is slightly different, as it allows the innermost level to be a tree and requires each internal face to be a 3-cycle.

  2. We thank the anonymous reviewer for pointing us to the prism drawings of outerplanar graphs.

References

  1. Angelini, P., Di Battista, G., Kaufmann, M., Mchedlidze, T., Roselli, V., Squarcella, C.: Small point sets for simply-nested planar graphs. In: van Kreveld, M., Speckmann, B. (eds.) International Symposium on Graph Drawing (GD’11). Lecture Notes in Computer Science, vol. 7034, pp. 75–85. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Angelini, P., Binucci, C., Evans, W., Hurtado, F., Liotta, G., Mchedlidze, T., Meijer, H., Okamoto, Y.: Universal point subsets for planar graphs. In: Chao, K., Hsu, T.S., Lee, D. (eds.) Proceedings of the 23rd International Symposium on Algorithms and Computation (ISAAC’12). Lecture Notes in Computer Science, vol. 7676, pp. 423–432. Springer, Heidelberg (2012)

  3. Angelini, P., Bruckdorfer, T., Kaufmann, M., Mchedlidze, T.: A universal point set for 2-outerplanar graphs. In: Di Giacomo, E., Lubiw, A. (eds.) International Symposium on Graph Drawing and Network Visualization (GD’15). Lecture Notes in Computer Science, vol. 9411, pp. 409–422. Springer, Cham (2015)

  4. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. Assoc. Comput. Mach. 41(1), 153–180 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bannister, M.J., Cheng, Z., Devanny, W.E., Eppstein, D.: Superpatterns and universal point sets. J. Graph Algorithms Appl. 18(2), 177–209 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Binucci, C., Di Giacomo, E., Didimo, W., Estrella-Balderrama, A., Frati, F., Kobourov, S.G., Liotta, G.: Upward straight-line embeddings of directed graphs into point sets. Comput. Geom. 43(2), 219–232 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bose, P.: On embedding an outer-planar graph in a point set. Comput. Geom. 23(3), 303–312 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. J. Graph Algorithms Appl. 10(2), 353–363 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cardinal, J., Hoffmann, M., Kusters, V.: On universal point sets for planar graphs. In: Akiyama, J., Kano, M., Sakai, T. (eds.) Computational Geometry and Graphs (TJJCCGG’12). Lecture Notes in Computer Science, vol. 8296, pp. 30–41. Springer, Berlin (2013)

  10. Cimikowski, R.J.: Finding Hamiltonian cycles in certain planar graphs. Inf. Process. Lett. 35(5), 249–254 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fáry embeddings of planar graphs. In: Simon, J. (ed.) Proceedings of the 20th Annual ACM Symposium on Theory of Computing (STOC’88), pp. 426–433. ACM (1988)

  12. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dujmović, V.: The utility of untangling. In: Di Giacomo, E., Lubiw, A. (eds.) International Symposium on Graph Drawing and Network Visualization (GD’15). Lecture Notes in Computer Science, vol. 9411, pp. 321–332. Springer, Cham (2015)

  14. Dujmović, V., Evans, W.S., Lazard, S., Lenhart, W., Liotta, G., Rappaport, D., Wismath, S.K.: On point-sets that support planar graphs. Comput. Geom. 46(1), 29–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Everett, H., Lazard, S., Liotta, G., Wismath, S.K.: Universal sets of \(n\) points for one-bend drawings of planar graphs with \(n\) vertices. Discrete Comput. Geom. 43(2), 272–288 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Felsner, S., Liotta, G., Wismath, S.K.: Straight-line drawings on restricted integer grids in two and three dimensions. J. Graph Algorithms Appl. 7(4), 363–398 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fulek, R., Tóth, C.D.: Universal point sets for planar three-trees. J. Discrete Algorithms 30, 101–112 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gritzmann, P., Mohar, B., Pach, J., Pollack, R.: Embedding a planar triangulation with vertices at specified positions. Am. Math. Mon. 98, 165–166 (1991)

    Article  Google Scholar 

  19. Kaufmann, M., Wiese, R.: Embedding vertices at points: few bends suffice for planar graphs. J. Graph Algorithms Appl. 6(1), 115–129 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kurowski, M.: A 1.235 lower bound on the number of points needed to draw all \(n\)-vertex planar graphs. Inf. Process. Lett. 92(2), 95–98 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Löffler, M., Tóth, C.D.: Linear-size universal point sets for one-bend drawings. In: Giacomo, E.D., Lubiw, A. (eds.) 23rd International Symposium on Graph Drawing and Network Visualization (GD’15). Lecture Notes in Computer Science, vol. 9411, pp. 423–429. Springer, Cham (2015)

  22. Open problem garden. http://www.openproblemgarden.org/op/small_universal_point_sets_for_planar_graphs

  23. Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) Symposium on Discrete Algorithms (SODA’90), pp. 138–148. SIAM, Philadelphia (1990)

    Google Scholar 

  24. Sysło, M., Proskurowski, A.: On Halin graphs. In: Borowiecki, M., Kennedy, J., Sysło, M. (eds.) Graph Theory. Lecture Notes in Mathematics, vol. 1018, pp. 248–256. Springer, Berlin (1983)

  25. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1), 36–67 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizio Angelini.

Additional information

Editor in Charge: János Pach

This work has been supported by DFG Grant Ka812/17-1 and by MIUR Project “AMANDA” under PRIN 2012C4E3KT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Angelini, P., Bruckdorfer, T., Di Battista, G. et al. Small Universal Point Sets for k-Outerplanar Graphs. Discrete Comput Geom 60, 430–470 (2018). https://doi.org/10.1007/s00454-018-0009-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00454-018-0009-x

Keywords

Mathematics Subject Classification

Navigation