Skip to main content
Log in

Maximum Matching in Almost Linear Time on Graphs of Bounded Clique-Width

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Recently, independent groups of researchers have presented algorithms to compute a maximum matching in \(\tilde{\mathcal{O}}(f(k) \cdot (n+m))\) time, for some computable function f, within the graphs where some clique-width upper bound is at most k (e.g., tree-width, modular-width and \(P_4\)-sparseness). However, to the best of our knowledge, the existence of such algorithm within the graphs of bounded clique-width has remained open until this paper. Indeed, we cannot even apply Courcelle’s theorem to this problem directly, because a matching cannot be expressed in \(MSO_1\) logic. Our first contribution is an almost linear-time algorithm to compute a maximum matching in any bounded clique-width graph, being given a corresponding clique-width expression. We also present how to compute the Edmonds-Gallai decomposition in almost linear time by using the same framework. For that, we do apply Courcelle’s theorem but to the classic Tutte-Berge formula, that can easily be expressed as a \(CMSO_1\) optimization problem. Doing so, we can compute the cardinality of a maximum matching, but not the matching itself. To obtain with this approach a maximum matching, we need to combine it with a recursive dissection scheme for bounded clique-width graphs and with a distributed version of Courcelle’s theorem (Courcelle and Vanicat, DAM 2016) – of which we present here a slightly stronger version than the standard one in the literature. Finally, for the bipartite graphs of clique-width at most k, we present an alternative \(\tilde{\mathcal{O}}(k^2\cdot (n+m))\)-time algorithm for the problem. The algorithm is randomized and it is based on a completely different approach than above: combining various reductions to matching and flow problems on bounded tree-width graphs with a very recent result on the parameterized complexity of linear programming (Dong et. al., STOC’21). Our results for bounded clique-width graphs extend many prior works on the complexity of Maximum Matching within cographs, distance-hereditary graphs, series-parallel graphs and other subclasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. More generally, the goal is, for some problem solvable in \(\mathcal{O}(m^{q+o(1)})\) time on arbitrary m-edge graphs, to design an \(\mathcal{O}(f(k) \cdot m^{p+o(1)})\)-time algorithm, for some \(p < q\), within the class of graphs where some fixed parameter is at most k.

  2. The \(\tilde{\mathcal{O}}()\) notation suppresses poly-logarithmic factors.

  3. The result is stated in [26] for minimization problems. Since we only consider it here for Maximum b-Matching, we rather write it as a maximization problem.

References

  1. Abboud, A., Vassilevska Williams, V., Wang, J.R.: Approximation and fixed parameter subquadratic algorithms for radius and diameter in sparse graphs. In: Proceedings of the twenty-seventh annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016), pages 377–391. SIAM, (2016)

  2. Alman, J., Vassilevska Williams, V.: A refined laser method and faster matrix multiplication. In :Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 522–539. SIAM, (2021)

  3. Anari, N., Vazirani, V.: Matching Is as Easy as the Decision Problem, in the NC Model. In: 11th Innovations in Theoretical Computer Science Conference (ITCS 2020), volume 151 of Leibniz International Proceedings in Informatics (LIPIcs), pages 54:1–54:25. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, (2020)

  4. Anstee, R.: A polynomial algorithm for b-matchings: an alternative approach. Inf. Process. Lett. 24(3), 153–157 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bentert, M., Fluschnik, T., Nichterlein, A., Niedermeier, R.: Parameterized aspects of triangle enumeration. J. Comput. Syst. Sci. 103, 61–77 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berge, C.: Sur le couplage maximum dun graphe. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L’ACADEMIE DES SCIENCES 247(3), 258–259 (1958)

    MATH  Google Scholar 

  7. Bondy, J.A., Murty, U.S.R.: Graph theory. Graduate Texts in Mathematics, vol. 244. Springer-Verlag, London (2008)

  8. Carmosino, M., Gao, J., Impagliazzo, R., Mihajlin, I., Paturi, R., Schneider, S.: Nondeterministic extensions of the strong exponential time hypothesis and consequences for non-reducibility. In: Proceedings of the 2016 ACM Conference on Innovations in Theoretical Computer Science, pages 261–270, (2016)

  9. Chang, M.: Algorithms for maximum matching and minimum fill-in on chordal bipartite graphs. In ISAAC, pages 146–155. Springer, (1996)

  10. Cheriyan, J.: Randomized \(\tilde{\cal{O}}(M(|V|))\) Algorithms for Problems in Matching Theory. SIAM J. Comput. 26(6), 1635–1655 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cohen-Addad, V., Habib, M., de Montgolfier, F.: Algorithmic aspects of switch cographs. Discret. Appl. Math. 200, 23–42 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Corneil, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Coudert, D., Ducoffe, G., Popa, A.: Fully polynomial FPT algorithms for some classes of bounded clique-width graphs. ACM Transactions on Algorithms (TALG) 15(3), 1–57 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Courcelle, B., Engelfriet, J.: Graph structure and monadic second-order logic: a language-theoretic approach, vol. 138. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  16. Courcelle, B., Heggernes, P., Meister, D., Papadopoulos, C., Rotics, U.: A characterisation of clique-width through nested partitions. Discret. Appl. Math. 187, 70–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Courcelle, B., Makowsky, J., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory of Computing Systems 33(2), 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Courcelle, B., Mosbah, M.: Monadic second-order evaluations on tree-decomposable graphs. Theoret. Comput. Sci. 109(1–2), 49–82 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discret. Appl. Math. 101(1), 77–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  20. Courcelle, B., Twigg, A.: Constrained-path labellings on graphs of bounded clique-width. Theory of Computing Systems 47(2), 531–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Courcelle, B., Vanicat, R.: Query efficient implementation of graphs of bounded clique-width. Discret. Appl. Math. 131(1), 129–150 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dabrowski, K., Paulusma, D.: Classifying the clique-width of \(H\)-free bipartite graphs. Discret. Appl. Math. 200, 43–51 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dahlhaus, E., Karpinski, M.: Matching and multidimensional matching in chordal and strongly chordal graphs. Discret. Appl. Math. 84(1–3), 79–91 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Diestel, R.: Graph Theory. Graduate Texts in Mathematics. 4th edn. Springer, (2010)

  25. Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci. 4(5), 406–451 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dong, S., Lee, Y.T., Ye G.: A nearly-linear time algorithm for linear programs with small treewidth: a multiscale representation of robust central path. In: Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 1784–1797, (2021)

  27. Dragan, F.: On greedy matching ordering and greedy matchable graphs. In: WG’97, volume 1335 of LNCS, pages 184–198. Springer, (1997)

  28. Ducoffe, G.: Maximum Matching in Almost Linear Time on Graphs of Bounded Clique-Width. In: Golovach, P.A., Zehavi, M.: (eds), International Symposium on Parameterized and Exact Computation (IPEC 2021), volume 214 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1–15:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, (2021)

  29. Ducoffe, G.: Optimal Centrality Computations Within Bounded Clique-Width Graphs. In: Golovach, P.A., Zehavi, M.: (eds) International Symposium on Parameterized and Exact Computation (IPEC 2021), volume 214 of Leibniz International Proceedings in Informatics (LIPIcs), pages 16:1–16:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, (2021)

  30. Ducoffe, G., Popa, A.: The b-Matching Problem in Distance-Hereditary Graphs and Beyond. In: 29th International Symposium on Algorithms and Computation (ISAAC 2018), volume 123 of Leibniz International Proceedings in Informatics (LIPIcs), pages 30:1–30:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, (2018)

  31. Ducoffe, G., Popa, A.: The use of a pruned modular decomposition for Maximum Matching algorithms on some graph classes. Discret. Appl. Math. 291, 201–222 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  32. Edmonds, J.: Paths, trees, and flowers. Canadian J. of mathematics 17(3), 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  33. Espelage, W., Gurski, F., Wanke, E.: How to solve NP-hard graph problems on clique-width bounded graphs in polynomial time. In: International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2001), volume 1 of Lecture Notes in Computer Science, pages 117–128. Springer, (2001)

  34. T. Fluschnik, G. Mertzios, and A. Nichterlein. Kernelization lower bounds for finding constant-size subgraphs. In Conference on Computability in Europe, pages 183–193. Springer, 2018

  35. Fomin, F., Korhonen, T.: Fast FPT-Approximation of Branchwidth. Technical Report 2111.03492, arXiv, (2021)

  36. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Intractability of clique-width parameterizations. SIAM J. Comput. 39(5), 1941–1956 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Almost optimal lower bounds for problems parameterized by clique-width. SIAM J. Comput. 43(5), 1541–1563 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  38. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S., Zehavi, M.: Clique-width III: Hamiltonian Cycle and the Odd Case of Graph Coloring. ACM Transactions on Algorithms (TALG) 15(1), 9 (2019)

    MathSciNet  MATH  Google Scholar 

  39. Fomin, F.V., Lokshtanov, D., Saurabh, S., Pilipczuk, M., Wrochna, M.: Fully polynomial-time parameterized computations for graphs and matrices of low treewidth. ACM Transactions on Algorithms (TALG) 14(3), 34:1-34:45 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Fouquet, J.-L., Giakoumakis, V., Vanherpe, J.-M.: Bipartite graphs totally decomposable by canonical decomposition. International J. of Foundations of Computer Science 10(04), 513–533 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Fouquet, J.-L., Parfenoff, I., Thuillier, H.: An \({O}(n)\)-time algorithm for maximum matching in \({P}_4\)-tidy graphs. Inf. Process. Lett. 62(6), 281–287 (1997)

    Article  MATH  Google Scholar 

  42. Fürer, M.: A natural generalization of bounded tree-width and bounded clique-width. In: Latin American Symposium on Theoretical Informatics, pages 72–83. Springer, (2014)

  43. Gabow, H.: Data structures for weighted matching and extensions to b-matching and f-factors. ACM Transactions on Algorithms (TALG) 14(3), 1–80 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  44. Gabow, H., Sankowski, P.: Algorithms for Weighted Matching Generalizations I: Bipartite Graphs, b-matching, and Unweighted f-factors. SIAM J. Comput. 50(2), 440–486 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  45. Gallai, T.: Kritische graphen II. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 8, 373–395 (1963)

    MathSciNet  MATH  Google Scholar 

  46. Gallai, T.: Maximale systeme unabhangiger kanten. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 9, 401–413 (1964)

    MathSciNet  MATH  Google Scholar 

  47. Gerards, A.: Matching. Handbooks Oper. Res. Management Sci. 7, 135–224 (1995)

    Article  MATH  Google Scholar 

  48. Giannopoulou, A.C., Mertzios, G.B., Niedermeier, R.: Polynomial fixed-parameter algorithms: A case study for longest path on interval graphs. Theoretical Comput. Sci. 689, 67–95 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  49. Glover, F.: Maximum matching in a convex bipartite graph. Naval Research Logistics (NRL) 14(3), 313–316 (1967)

    Article  MATH  Google Scholar 

  50. Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. Int. J. Found. Comput. Sci. 11(03), 423–443 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  51. Hagerup, T., Katajainen, J., Nishimura, N., Ragde, P.: Characterizing multiterminal flow networks and computing flows in networks of small treewidth. J. Comput. Syst. Sci. 57(3), 366–375 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. Hegerfeld, F., Kratsch, S.: On Adaptive Algorithms for Maximum Matching. In: 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132, pages 71:1–71:16. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, (2019)

  53. Iwata, Y., Ogasawara, T., Ohsaka, N.: On the power of tree-depth for fully polynomial FPT algorithms. In: International Symposium on Theoretical Aspects of Computer Science (STACS 2018), volume 96 of Leibniz International Proceedings in Informatics (LIPIcs), pages 41:1–41:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, (2018)

  54. Jordan, C.: Sur les assemblages de lignes. J. Reine Angew. Math. 70(185), 81 (1869)

    MathSciNet  MATH  Google Scholar 

  55. Kratsch, S., Nelles, F.: Efficient and Adaptive Parameterized Algorithms on Modular Decompositions. In: Annual European Symposium on Algorithms (ESA 2018), pp 55:1–55:15, (2018)

  56. Kratsch, S., Nelles, F.: Efficient Parameterized Algorithms for Computing All-Pairs Shortest Paths. In: 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020), volume 154, pp. 38:1–38:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, (2020)

  57. Lee, Y.T., Sidford, A.: Path Finding I: Solving Linear Programs with \(\tilde{\cal{O}}(\sqrt{\text{rank}})\) Linear System Solves. Technical Report 1312.6677, arXiv, (2013)

  58. Liang, Y., Rhee, C.: Finding a maximum matching in a circular-arc graph. Inf. Process. Lett. 45(4), 185–190 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  59. Lovász, L., Plummer, M.: Matching theory, vol. 367. American Mathematical Soc, Providence, RI (2009)

    MATH  Google Scholar 

  60. Madry, A.: Navigating central path with electrical flows: From flows to matchings, and back. In: 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, pages 253–262. IEEE, (2013)

  61. Makowsky, J.A., Rotics, U.: On the clique-width of graphs with few \(P_4\)’s. Int. J. Found. Comput. Sci. 10(03), 329–348 (1999)

    Article  MATH  Google Scholar 

  62. Mertzios, G., Nichterlein, A., Niedermeier, R.: A Linear-Time Algorithm for Maximum-Cardinality Matching on Cocomparability Graphs. SIAM J. Discret. Math. 32(4), 2820–2835 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. Mertzios, G.B., Nichterlein, A., Niedermeier, R.: The power of linear-time data reduction for maximum matching. In: International Symposium on Mathematical Foundations of Computer Science (MFCS 2017), volume 83 of Leibniz International Proceedings in Informatics (LIPIcs), pages 46:1–46:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, (2017)

  64. Micali, S., Vazirani, V.: An \({O}(\sqrt{V} {E})\) algorithm for finding maximum matching in general graphs. In: FOCS’80, pp. 17–27. IEEE, (1980)

  65. Moitra, A., Johnson, R.: A parallel algorithm for maximum matching on interval graphs. In: ICPP, (1989)

  66. Oum, S.: Rank-width and vertex-minors. Journal of Combinatorial Theory, Series B 95(1), 79–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  67. Oum, S., Seymour, P.: Approximating clique-width and branch-width. Journal of Combinatorial Theory, Series B 96(4), 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  68. Padberg, M., Rao, M.: The Russian method for linear inequalities III: Bounded integer programming. Technical Report 78, INRIA, (1981)

  69. Pulleyblank, W.: Faces of Matching Polyhedra. PhD thesis, Univ. of Waterloo, Dept. Combinatorics and Optimization, (1973)

  70. Rao, M.: Solving some NP-complete problems using split decomposition. Discret. Appl. Math. 156(14), 2768–2780 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  71. Renegar, J.: A polynomial-time algorithm, based on Newton’s method, for linear programming. Math. Program. 40(1), 59–93 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  72. Thatcher, J., Wright, J.: Generalized finite automata theory with an application to a decision problem of second-order logic. Mathematical systems theory 2(1), 57–81 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  73. Trinajstić, N., Klein, D., Randić, M.: On some solved and unsolved problems of chemical graph theory. Int. J. Quantum Chem. 30(S20), 699–742 (1986)

    Article  Google Scholar 

  74. Tutte, W.: The factorization of linear graphs. J. Lond. Math. Soc. 1(2), 107–111 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  75. Tutte, W.: A short proof of the factor theorem for finite graphs. Canad. J. Math 6(1954), 347–352 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  76. Tutte, W.: Antisymmetrical digraphs. Can. J. Math. 19, 1101–1117 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  77. Vassilevska Williams, V.: On some fine-grained questions in algorithms and complexity. In: Proceedings of the ICM, volume 3, pages 3431–3472. World Scientific, (2018)

  78. Vassilevska Williams, V., Williams, R.: Subcubic equivalences between path, matrix, and triangle problems. Journal of the ACM (JACM) 65(5), 1–38 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  79. Yu, M.-S., Yang, C.-H.: An \({O}(n)\)-time algorithm for maximum matching on cographs. Inf. Process. Lett. 47(2), 89–93 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  80. Yuster, R.: Maximum matching in regular and almost regular graphs. Algorithmica 66(1), 87–92 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  81. Yuster, R., Zwick, U.: Maximum matching in graphs with an excluded minor. In: Proceedings of the eighteenth annual ACM-SIAM Symposium on Discrete Algorithms, pages 108–117. Society for Industrial and Applied Mathematics, (2007)

Download references

Acknowledgements

We thank the anonymous reviewers for their valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Ducoffe.

Ethics declarations

Conflict of Interest

This work was supported by Grant TC ICUB-SSE 15109-26.07.2021, “The complexity landscape of Maximum Matching”. It was also supported by project PN-19-37-04-01 “New solutions for complex problems in current ICT research fields based on modelling and optimization”, funded by the Romanian Core Program of the Ministry of Research and Innovation (MCI) 2019-2022.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Results of this paper were partially presented at the IPEC’21 conference [28].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ducoffe, G. Maximum Matching in Almost Linear Time on Graphs of Bounded Clique-Width. Algorithmica 84, 3489–3520 (2022). https://doi.org/10.1007/s00453-022-00999-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-022-00999-9

Navigation