Skip to main content
Log in

An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour (J Comb Theory Ser B 96(4):514–528, 2006). Motivated from recent development on graph modification problems regarding classes of graphs of bounded treewidth or pathwidth, we study the Linear Rankwidth-1 Vertex Deletion problem (shortly, LRW1-Vertex Deletion). In the LRW1-Vertex Deletion problem, given an n-vertex graph G and a positive integer k, we want to decide whether there is a set of at most k vertices whose removal turns G into a graph of linear rankwidth at most 1 and find such a vertex set if one exists. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-Vertex Deletion can be solved in time \(f(k)\cdot n^3\) for some function f, it is not clear whether this problem allows a running time with a modest exponential function. We first establish that LRW1-Vertex Deletion can be solved in time \(8^k\cdot n^{{\mathcal {O}}(1)}\). The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define necklace graphs and investigate their structural properties. Later, we reduce the polynomial factor by refining the trivial branching step based on a cliquewidth expression of a graph, and obtain an algorithm that runs in time \(2^{{\mathcal {O}}(k)}\cdot n^4\). We also prove that the running time cannot be improved to \(2^{o(k)}\cdot n^{{\mathcal {O}}(1)}\) under the Exponential Time Hypothesis assumption. Lastly, we show that the LRW1-Vertex Deletion problem admits a polynomial kernel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adler, I., Farley, A.M., Proskurowski, A.: Obstructions for linear rank-width at most 1. Discrete Appl. Math. 168, 3–13 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adler, I., Kanté, M.M., Kwon, O.: Linear rank-width of distance-hereditary graphs II. Vertex-minor obstructions. preprint (2015). arXiv:1508.04718

  3. Adler, I., Kanté, M.M., Kwon, O.: Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm. Algorithmica (2016). doi:10.1007/s00453-016-0164-5

  4. Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser. B 41(2), 182–208 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bui-Xuan, B., Kanté, M.M., Limouzy, V.: A note on graphs of linear rank-width 1. preprint (2013). arXiv:1306.1345

  6. Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. J. Comput. Syst. Sci. 67(4), 789–807 (2003). (Special issue on parameterized computation and complexity)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, Y.: Unit interval editing is fixed-parameter tractable. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) Automata, Languages, and Programming. Part I, Volume 9134 of Lecture Notes in Computer Science, pp. 306–317. Springer, Heidelberg (2015)

  8. Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans. Algorithms 11(3), Art. 21, 35 (2015)

  9. Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. In: Studies in Integer Programming, Annals of Discrete Mathematics (Proceedings Workshop, Bonn, 1975), vol. 1, pp. 145–162. North-Holland, Amsterdam (1977)

  10. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Courcelle, B., Kanté, M.M.: Graph operations characterizing rank-width. Discrete Appl. Math. 157(4), 627–640 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic, and a conjecture by Seese. J. Comb. Theory Ser. B 97(1), 91–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods 3(2), 214–228 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: An improved FPT algorithm and a quadratic kernel for pathwidth one vertex deletion. Algorithmica 64(1), 170–188 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition. J. Algorithms 36(2), 205–240 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  17. Eiben, E., Ganian, R., Kwon, O.: A single-exponential fixed-parameter algorithm for distance-hereditary vertex deletion. In: Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016), Volume 58 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 1–34. Dagstuhl, Germany (2016)

  18. Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-Deletion: approximation, kernelization and optimal FPT algorithms. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science-FOCS 2012, pp. 470–479. IEEE Computer Society, Los Alamitos, CA (2012)

  19. Fomin, F.V., Saurabh, S., Villanger, Y.: A polynomial kernel for proper interval vertex deletion. SIAM J. Discrete Math. 27(4), 1964–1976 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic 130(1–3), 3–31 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ganian, R.: Thread graphs, linear rank-width and their algorithmic applications. In: Iliopoulos, C.S., Smyth, W.F. (eds.) Combinatorial Algorithms, Volume 6460 of Lecture Notes in Computer Science, pp. 38–42. Springer, Heidelberg (2011)

  22. Ganian, R., Hliněný, P.: On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width. Discrete Appl. Math. 158(7), 851–867 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Geelen, J., Gerards, B., Whittle, G.: On Rota’s conjecture and excluded minors containing large projective geometries. J. Comb. Theory Ser. B 96(3), 405–425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Gioan, E., Paul, C.: Split decomposition and graph-labelled trees: characterizations and fully dynamic algorithms for totally decomposable graphs. Discrete Appl. Math. 160(6), 708–733 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hall, R., Oxley, J., Semple, C.: The structure of 3-connected matroids of path width three. Eur. J. Comb. 28(3), 964–989 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). Special issue on FOCS 98. Palo Alto, CA

    Article  MathSciNet  MATH  Google Scholar 

  27. Jeong, J., Kim, E.J., Oum, S.: Constructive algorithm for path-width of matroids. In: Krauthgamer, R. (ed.) Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10–12, 2016, pp. 1695–1704. SIAM (2016)

  28. Jeong, J., Kwon, O., Oum, S.: Excluded vertex-minors for graphs of linear rank-width at most \(k\). Eur. J. Comb. 41, 242–257 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kanté, M.M.: Well-quasi-ordering of matrices under Schur complement and applications to directed graphs. Eur. J. Comb. 33(8), 1820–1841 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kanté, M.M., Kim, E.J., Kwon, O.-J., Paul, C.: An FPT algorithm and a polynomial kernel for linear rankwidth-1 vertex deletion. In: 10th International Symposium on Parameterized and Exact Computation, Volume-43 of LIPIcs. Leibniz International Proceedings in Informatics, pp. 138–150. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2015)

  31. Kashyap, N.: Matroid pathwidth and code trellis complexity. SIAM J. Discrete Math. 22(1), 256–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.: Linear kernels and single-exponential algorithms via protrusion decompositions. ACM Trans. Algorithms 12(2), Art. 21, 41 (2016)

  33. Koutsonas, A., Thilikos, D.M., Yamazaki, K.: Outerplanar obstructions for matroid pathwidth. Discrete Math. 315, 95–101 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, W., Yang, Y., Chen, J., Wang, J.: Further Kernelization of Proper Interval Vertex Deletion: New Observations and Refined Analysis. preprint (2016). arXiv:1606.01925

  35. Oum, S.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95(1), 79–100 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Oum, S.: Approximating rank-width and clique-width quickly. ACM Trans. Algorithms 5(1), Art. 10, 20 (2008)

  37. Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Comb. Theory Ser. B 96(4), 514–528 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Philip, G., Raman, V., Villanger, Y.: A quartic kernel for pathwidth-one vertex deletion. In: Thilikos, D. (ed.) Graph Theoretic Concepts in Computer Science, Volume 6410 of Lecture Notes in Computer Science, pp. 196–207. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

  39. Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory Ser. B 92(2), 325–357 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  40. van Bevern, R., Komusiewicz, C., Moser, H., Niedermeier, R.: Measuring indifference: unit interval vertex deletion. In: Thilikos, D.M. (ed.) Graph-Theoretic Concepts in Computer Science, Volume 6410 of Lecture Notes in Computer Science, pp. 232–243. Springer, Berlin (2010)

  41. van’t Hof, P., Villanger, Y.: Proper interval vertex deletion. Algorithmica 65(4), 845–867 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

O-joung Kwon would like to thank Sang-il Oum for suggesting the refined branching algorithm using cliquewidth.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O-joung Kwon.

Additional information

An extended abstract appeared in Proceedings of 10th International Symposium on Parameterized and Exact Computations, 2015 [30].

O-joung Kwon: supported by ERC Starting Grant PARAMTIGHT (No. 280152). The work was partially done while at Department of Mathematical Sciences, KAIST, and supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2011-0011653).

Christophe Paul: supported by the “Chercheur d’avenir – Languedoc-Roussillon” project KERNEL.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanté, M.M., Kim, E.J., Kwon, Oj. et al. An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion. Algorithmica 79, 66–95 (2017). https://doi.org/10.1007/s00453-016-0230-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-016-0230-z

Keywords

Navigation