Skip to main content
Log in

Conjugacy in Baumslag’s Group, Generic Case Complexity, and Division in Power Circuits

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The conjugacy problem asks whether two words over generators of a fixed group G are conjugated, i.e., it is the problem to decide on input words x, y whether there exists z such that \(zx z^{-1} =y\) in G. The conjugacy problem is more difficult than the word problem, in general. We investigate the conjugacy problem for two prominent groups: the Baumslag–Solitar group \(\mathbf{{BS}}_{1,2}\) and the Baumslag group \({\mathbf{{G}}}_{1,2}\) (also known as Baumslag–Gersten group). The conjugacy problem in \({\mathbf{{BS}}}_{1,2}\) is complete for the circuit class \(\mathsf {TC}^0\). To the best of our knowledge \({\mathbf{{BS}}}_{1,2}\) is the first natural infinite non-commutative group where such a precise and low complexity is shown. The Baumslag group \({\mathbf{{G}}}_{1,2}\) is an HNN-extension of \({\mathbf{{BS}}}_{1,2}\). Hence, decidability of the conjugacy problem in \(\mathbf{{G}}_{1,2}\) outside the so-called “black hole” follows from Borovik et al. (Int J Algebra Comput 17(5/6):963–997, 2007). Decidability everywhere is due to Beese. Moreover, he showed exponential time for the set of elements which cannot be conjugated into \(\mathbf{{BS}}_{1,2}\) (Beese 2012). Here we improve Beese’s result in two directions by showing that the conjugacy problem in \({\mathbf{{G}}}_{1,2}\) can be solved in polynomial time in a strongly generic setting. This means that essentially for all inputs, conjugacy in \({\mathbf{{G}}}_{1,2}\) can be decided efficiently. In contrast, we show that under a plausible assumption the average case complexity of the same problem is non-elementary. Moreover, we provide a lower bound for the conjugacy problem in \({\mathbf{{G}}}_{1,2}\) by reducing the divisibility problem in power circuits to the conjugacy problem in \({\mathbf{{G}}}_{1,2}\). The complexity of the divisibility problem in power circuits is an open and interesting problem in integer arithmetic. We conjecture that it cannot be solved in elementary time because we can show that it cannot be solved in elementary time by calculating modulo values in power circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The notation HNN refers to three mathematician: Graham Higman, Bernhard H. Neumann and Hanna Neumann.

  2. Pure decidability of the word problem in \(\mathbf{{G}}_{1,2}\) is not an issue since it is known for all one-relator groups by Magnus famous result in [17]. However, it is open whether an analogous statement holds for the conjugacy problem.

  3. This fact is from [2], where it leads to an exponential time algorithm.

  4. Dyck was a German mathematician (1856–1934) and founding rector of the Technical University Munich in 1903. The idea of this drawing goes back to the Swiss mathematician Heinz Rutishauser (1918–1970).

References

  1. Baumslag, G.: A non-cyclic one-relator group all of whose finite quotients are cyclic. J. Aust. Math. Soc. 10(3–4), 497–498 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beese, J.: Das Konjugationsproblem in der Baumslag–Gersten–Gruppe. Diploma thesis, Fakultät Mathematik, Universität Stuttgart (2012). (in German)

  3. Borovik, A.V., Myasnikov, A.G., Remeslennikov, V.N.: Generic complexity of the conjugacy problem in HNN-extensions and algorithmic stratification of Miller’s groups. Int. J. Algebra Comput. 17(5/6), 963–997 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ceccherini-Silberstein, T., Grigorchuk, R.I., de la Harpe, P.: Amenability and paradoxical decompositions for pseudogroups and discrete metric spaces. Trudy Matematicheskogo Instituta Imeni V. A. Steklova. Rossiĭskaya Akad. Nauk 224, 68–111 (1999)

    MATH  Google Scholar 

  5. Craven, M.J., Jimbo, H.C.: Evolutionary algorithm solution of the multiple conjugacy search problem in groups, and its applications to cryptography. Groups Complex. Cryptol. 4, 135–165 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Diekert, V., Laun, J., Ushakov, A.: Efficient algorithms for highly compressed data: the word problem in Higman’s group is in P. Int. J. Algebra Comput. 22(8), 1–19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Diekert, V., Myasnikov, A.G., Weiß, A.: Amenability of Schreier graphs and strongly generic algorithms for the conjugacy problem. In: Proceedings of ISSAC 2015. ACM Press (2015). arXiv:1501.05579

  8. Gersten, S.M.: Dehn functions and L1-norms of finite presentations. In: Baumslag, G., Miller III, C.F. (eds.) Algorithms and Classification in Combinatorial Group Theory, pp. 195–225. Springer, Berlin (1992)

  9. Gersten, S.M.: Isoperimetric and isodiametric functions of finite presentations. In: Geometric Group Theory, vol. 1 (Sussex, 1991), London Mathematical Society Lecture Note Series, vol. 181, pp. 79–96. Cambridge University Press, Cambridge (1993)

  10. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  11. Grigoriev, D., Shpilrain, V.: Authentication from matrix conjugation. Groups Complex. Cryptol. 1, 199–205 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Hesse, W.: Division is in uniform \({\rm TC}^{0}\). In: Orejas, F., Spirakis, P.G., van Leeuwen, P.G. (eds.) ICALP, Lecture Notes in Computer Science, vol. 2076, pp. 104–114. Springer (2001)

  13. Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci. 65, 695–716 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kapovich, I., Miasnikov, A.G., Schupp, P., Shpilrain, V.: Generic-case complexity, decision problems in group theory and random walks. J. Algebra 264, 665–694 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kapovich, I., Myasnikov, A., Schupp, P., Shpilrain, V.: Average-case complexity and decision problems in group theory. Adv. Math. 190, 343–359 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lyndon, R., Schupp, P.: Combinatorial Group Theory. Classics in Mathematics. Springer, Berlin (2001). First edition 1977

    MATH  Google Scholar 

  17. Magnus, W.: Das Identitätsproblem für Gruppen mit einer definierenden Relation. Math. Ann. 106, 295–307 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miller III, C.F.: On Group-Theoretic Decision Problems and Their Classification, Annals of Mathematics Studies, vol. 68. Princeton University Press, Princeton (1971)

    Google Scholar 

  19. Myasnikov, A., Shpilrain, V., Ushakov, A.: Group-Based Cryptography. Advanced Courses in Mathematics. CRM, Barcelona; Birkhäuser, Basel (2008)

  20. Myasnikov, A.G., Ushakov, A., Won, D.W.: The word problem in the Baumslag group with a non-elementary Dehn function is polynomial time decidable. J. Algebra 345, 324–342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Myasnikov, A.G., Ushakov, A., Won, D.W.: Power circuits, exponential algebra, and time complexity. Int. J. Algebra Comput. 22(6), 3–53 (2012)

    MathSciNet  Google Scholar 

  22. Northshield, S.: Cogrowth of regular graphs. Proc. Am. Math. Soc. 116(1), 203–205 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  23. Papadimitriou, Ch.: Computation Complexity. Addison-Wesley, Reading (1994)

    Google Scholar 

  24. Shpilrain, V., Zapata, G.: Combinatorial group theory and public key cryptography. Appl. Algebra Eng. Commun. Comput. 17, 291–302 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  26. Woess, W.: Random walks on infinite graphs and groups—a survey on selected topics. Lond. Math. Soc. 26, 1–60 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Diekert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diekert, V., Myasnikov, A.G. & Weiß, A. Conjugacy in Baumslag’s Group, Generic Case Complexity, and Division in Power Circuits. Algorithmica 76, 961–988 (2016). https://doi.org/10.1007/s00453-016-0117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-016-0117-z

Keywords

Navigation