Skip to main content
Log in

Faster Swap Edge Computation in Minimum Diameter Spanning Trees

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In network communication systems, frequently messages are routed along a minimum diameter spanning tree (MDST) of the network, to minimize the maximum travel time of messages. When a transient failure disables an edge of the MDST, the network is disconnected, and a temporary replacement edge must be chosen, which should ideally minimize the diameter of the new spanning tree. Such a replacement edge is called a best swap. Preparing for the failure of any edge of the MDST, the all-best-swaps (ABS) problem asks for finding the best swap for every edge of the MDST. Given a 2-edge-connected weighted graph G=(V,E), where |V|=n and |E|=m, we solve the ABS problem in O(mlog n) time and O(m) space, thus considerably improving upon the decade-old previously best solution, which requires \(O(n\sqrt{m})\) time and O(m) space, for m=o(n 2/log 2 n).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bulterman, R.W., van der Sommen, F.W., Zwaan, G., Verhoeff, T., van Gasteren, A.J.M., Feijen, W.H.J.: On computing a longest path in a tree. Inf. Process. Lett. 81(2), 93–96 (2002)

    Article  MATH  Google Scholar 

  2. Di Salvo, A., Proietti, G.: Swapping a failing edge of a shortest paths tree by minimizing the average stretch factor. Theor. Comput. Sci. 383(1), 23–33 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Flocchini, P., Enriques, A.M., Pagli, L., Prencipe, G., Santoro, N.: Point-of-failure shortest-path rerouting: computing the optimal swap edges distributively. IEICE Trans. Inf. Syst. E89-D(2): 700–708 (2006)

    Article  Google Scholar 

  4. Flocchini, P., Enriquez, T.M., Pagli, L., Prencipe, G., Santoro, N.: Distributed computation of all node replacements of a minimum spanning tree. In: 13th International Conference on Parallel Processing (Euro-Par), pp. 598–607 (2007)

  5. Flocchini, P., Pagli, L., Prencipe, G., Santoro, N., Widmayer, P.: Computing all the best swap edges distributively. J. Parall. Distrib. Comput. 68(7), 976–983 (2008)

    Article  Google Scholar 

  6. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  7. Gfeller, B.: Algorithmic solutions for transient faults in communication networks. On swap edges and local algorithms. PhD thesis, Diss. Nr. 18599, ETH Zurich, 2009. Available at doi:10.3929/ethz-a-005920166

  8. Gfeller, B., Santoro, N., Widmayer, P.: A distributed algorithm for finding all best swap edges of a minimum diameter spanning tree. IEEE Trans. Dependable Secure Comput. (2009). doi:10.1109/TDSC.2009.17

    MATH  Google Scholar 

  9. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ito, H., Iwama, K., Okabe, Y., Yoshihiro, T.: Single backup table schemes for shortest-path routing. Theor. Comput. Sci. 333(3), 347–353 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Nardelli, E., Proietti, G., Widmayer, P.: Finding all the best swaps of a minimum diameter spanning tree under transient edge failures. J. Graph Algorithms Appl. 5(5), 39–57 (2001)

    MATH  MathSciNet  Google Scholar 

  12. Nardelli, E., Proietti, G., Widmayer, P.: Finding the most vital node of a shortest path. Theor. Comput. Sci. 296(1), 167–177 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nardelli, E., Proietti, G., Widmayer, P.: Swapping a failing edge of a single source shortest paths tree is good and fast. Algorithmica 35(1), 56–74 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nardelli, E., Proietti, G., Widmayer, P.: Nearly linear time minimum spanning tree maintenance for transient node failures. Algorithmica 40(2), 119–132 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Proietti, G.: Dynamic maintenance versus swapping: an experimental study on shortest paths trees. In: 4th International Workshop on Algorithm Engineering (WAE), pp. 207–217 (2000)

  16. Tarjan, R.E.: Applications of path compression on balanced trees. J. ACM 26(4), 690–715 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Wu, B.Y., Hsiao, C.-Y., Chao, K.-M.: The swap edges of a multiple-sources routing tree. Algorithmica 50(3), 299–311 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beat Gfeller.

Additional information

A preliminary version of this paper appeared in the Proceedings of the 16th Annual European Symposium on Algorithms (ESA), 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gfeller, B. Faster Swap Edge Computation in Minimum Diameter Spanning Trees. Algorithmica 62, 169–191 (2012). https://doi.org/10.1007/s00453-010-9448-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-010-9448-3

Keywords

Navigation