Skip to main content
Log in

Effect mechanism of micron-scale zero-valent iron enhanced pyrite-driven denitrification biofilter for nitrogen and phosphorus removal

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study aims to explore the effect mechanism of micron-scale zero-valent iron (mZVI) to improve nitrogen and phosphorus removal in a pyrite (FeS2)-driven denitrification biofilter (DNBF) for the secondary effluent treatment. Two similar DNBFs (DNBF-A with FeS2 as fillers and DNBF-B with the mixture mZVI and FeS2 as carrier) were developed. The results showed that NO3–N, total nitrogen (TN) and PO43−–P removal efficiencies were up to 91.64%, 67.44% and 80.26% in DNBF-B, which were obviously higher than those of DNBF-A (with NO3–N, TN and PO43−–P removal efficiencies of 38.39%, 44.89% and 53.02%, respectively). Kinetic analysis of both PO43−–P and NO3–N showed an increase in the rate constant (K) for DNBF-B compared to DNBF-A. The addition of mZVI not only improved the electron transport system activity (ETSA), but also achieved system Fe(II)/Fe(III) redox cycle in DNBF-B. In addition, the high-throughput sequencing analysis indicated that the addition of mZVI could obviously stimulate the enrichment of functional bacteria, such as Thiobacillus (11.99%), Mesotoga (7.50%), JGI-0000079D21 (6.37%), norank_f__Bacteroidetes_vadinHA17 (6.19%), Aquimonas (5.93%) and Arenimonas (3.97%). These genus played the important role in nitrogen and phosphorus removal in DNBF-B. Addition mZVI in the FeS2-driven denitrification biofilter is highly promising for TN and TP removal during secondary effluent treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data included in this study are available upon request by contact with the corresponding author.

References

  1. Ministry of housing and urban-rural development of China. Ministry of housing and urban-rural development, Beijing, China. (2018).

  2. Wu L, Ning D, Zhang B, Li Y, Zhang P, Shan X, Zhang Q, Brown MR, Li Z, Van Nostrand JD, Ling F, Xiao N, Zhang Y, Vierheilig J, Wells GF, Yang Y, Deng Y, Tu Q, Wang A, Global Water Microbiome C, Zhang T, He Z, Keller J, Nielsen PH, Alvarez PJJ, Criddle CS, Wagner M, Tiedje JM, He Q, Curtis TP, Stahl DA, Alvarez-Cohen L, Rittmann BE, Wen X, Zhou J (2019) Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat microbiol 4:1183–1195. https://doi.org/10.1038/s41564-019-0426-5

    Article  PubMed  CAS  Google Scholar 

  3. Li H, Li Y, Guo J, Song Y, Hou Y, Lu C, Han Y, Shen X, Liu B (2021) Effect of calcinated pyrite on simultaneous ammonia, nitrate and phosphorus removal in the BAF system and the Fe2+ regulatory mechanisms: electron transfer and biofilm properties. Environ Res 194:110708. https://doi.org/10.1016/j.envres.2021.110708

    Article  PubMed  CAS  Google Scholar 

  4. Gao L, Zhou W, Huang J, He S, Yan Y, Zhu W, Wu S, Zhang X (2017) Nitrogen removal by the enhanced floating treatment wetlands from the secondary effluent. Bioresour Technol 234:243–252. https://doi.org/10.1016/j.biortech.2017.03.036

    Article  PubMed  CAS  Google Scholar 

  5. Peng C, Gao Y, Fan X, Peng P, Huang H, Zhang X, Ren H (2019) Enhanced biofilm formation and denitrification in biofilters for advanced nitrogen removal by rhamnolipid addition. Bioresour Technol 287:121387. https://doi.org/10.1016/j.biortech.2019.121387

    Article  PubMed  CAS  Google Scholar 

  6. Zhou Q, Sun H, Jia L, Wu W, Wang J (2022) Simultaneous biological removal of nitrogen and phosphorus from secondary effluent of wastewater treatment plants by advanced treatment: a review. Chemosphere 296:134054. https://doi.org/10.1016/j.chemosphere.2022.134054

    Article  PubMed  CAS  Google Scholar 

  7. Fu J, Lin Z, Zhao P, Wang Y, He L, Zhou J (2019) Establishment and efficiency analysis of a single-stage denitrifying phosphorus removal system treating secondary effluent. Bioresour Technol 288:121520. https://doi.org/10.1016/j.biortech.2019.121520

    Article  PubMed  CAS  Google Scholar 

  8. Zhang S, Zhu C, Xia S, Li M (2019) Impact of different running conditions on performance of biofilters treating secondary effluent during start-up. Bioresour Technol 281:168–178. https://doi.org/10.1016/j.biortech.2019.02.094

    Article  PubMed  CAS  Google Scholar 

  9. Peng C, Huang H, Gao Y, Fan X, Peng P, Zhang X, Ren H (2020) A novel start-up strategy for mixotrophic denitrification biofilters by rhamnolipid and its performance on denitrification of low C/N wastewater. Chemosphere 239:124726. https://doi.org/10.1016/j.chemosphere.2019.124726

    Article  PubMed  CAS  Google Scholar 

  10. Šereš M, Mocová KA, Moradi J, Kriška M, Kočí V, Hnátková T (2019) The impact of woodchip-gravel mixture on the efficiency and toxicity of denitrification bioreactors. Sci Total Environ 647:888–894. https://doi.org/10.1016/j.scitotenv.2018.08.042

    Article  PubMed  CAS  Google Scholar 

  11. Ge Z, Wei D, Zhang J, Hu J, Liu Z, Li R (2019) Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: three years of pilot study. Water Res 148:153–161. https://doi.org/10.1016/j.watres.2018.10.037

    Article  PubMed  CAS  Google Scholar 

  12. Hu Y, Wu G, Li R, Xiao L, Zhan X (2020) Iron sulphides mediated autotrophic denitrification: an emerging bioprocess for nitrate pollution mitigation and sustainable wastewater treatment. Water Res 179:115914. https://doi.org/10.1016/j.watres.2020.115914

    Article  PubMed  CAS  Google Scholar 

  13. Xu Z, Li Y, Zhou P, Song X, Wang Y (2022) New insights on simultaneous nitrate and phosphorus removal in pyrite-involved mixotrophic denitrification biofilter for a long-term operation: performance change and its underlying mechanism. Sci Total Environ 845:157403. https://doi.org/10.1016/j.scitotenv.2022.157403

    Article  PubMed  CAS  Google Scholar 

  14. Wang Y, Wu G, Zheng X, Mao W, Guan Y (2022) Synergistic ammonia and nitrate removal in a novel pyrite-driven autotrophic denitrification biofilter. Bioresour Technol 355:127223. https://doi.org/10.1016/j.biortech.2022.127223

    Article  PubMed  CAS  Google Scholar 

  15. Chen Y, Shao Z, Kong Z, Gu L, Fang J, Chai H (2020) Study of pyrite based autotrophic denitrification system for low-carbon source stormwater treatment. J Water Process Eng 37:101414. https://doi.org/10.1016/j.jwpe.2020.101414

    Article  Google Scholar 

  16. Yang Y, Chen T, Morrison L, Gerrity S, Collins G, Porca E, Li R, Zhan X (2017) Nanostructured pyrrhotite supports autotrophic denitrification for simultaneous nitrogen and phosphorus removal from secondary effluents. Chem Eng J 328:511–518. https://doi.org/10.1016/j.cej.2017.07.061

    Article  CAS  Google Scholar 

  17. Tong S, Rodriguez-Gonzalez LC, Feng C, Ergas SJ (2016) Comparison of particulate pyrite autotrophic denitrification (PPAD) and sulfur oxidizing denitrification (SOD) for treatment of nitrified wastewater. Water Sci Technol 75:239–246. https://doi.org/10.2166/wst.2016.502

    Article  CAS  Google Scholar 

  18. Di Capua F, Mascolo MC, Pirozzi F, Esposito G (2020) Simultaneous denitrification, phosphorus recovery and low sulfate production in a recirculated pyrite-packed biofilter (RPPB). Chemosphere 255:126977. https://doi.org/10.1016/j.chemosphere.2020.126977

    Article  PubMed  CAS  Google Scholar 

  19. Li R, Morrison L, Collins G, Li A, Zhan X (2016) Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction. Water Res 96:32–41. https://doi.org/10.1016/j.watres.2016.03.034

    Article  PubMed  CAS  Google Scholar 

  20. Li Y, Guo J, Li H, Song Y, Chen Z, Lu C, Han Y, Hou Y (2020) Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers. Bioresour Technol 296:122340. https://doi.org/10.1016/j.biortech.2019.122340

    Article  PubMed  CAS  Google Scholar 

  21. Shi X, Wei W, Wu L, Ni B-J (2021) Zero-valent iron mediated biological wastewater and sludge treatment. Chem Eng J 426:130821. https://doi.org/10.1016/j.cej.2021.130821

    Article  CAS  Google Scholar 

  22. Cao J, Xiong Z, Lai B (2018) Effect of initial pH on the tetracycline (TC) removal by zero-valent iron: adsorption, oxidation and reduction. Chem Eng J 343:492–499. https://doi.org/10.1016/j.cej.2018.03.036

    Article  CAS  Google Scholar 

  23. Wei K, Li H, Gu H, Liu X, Ling C, Cao S, Li M, Liao M, Peng X, Shi Y, Shen W, Liang C, Ai Z, Zhang L (2022) Strained zero-valent iron for highly efficient heavy metal removal. Adv Funct Mater 32:2200498. https://doi.org/10.1002/adfm.202200498

    Article  CAS  Google Scholar 

  24. Peng Y, He S, Wu F (2021) Biochemical processes mediated by iron-based materials in water treatement: enhancing nitrogen and phosphorus removal in low C/N ratio wastewater. Sci Total Environ 775:145137. https://doi.org/10.1016/j.scitotenv.2021.145137

    Article  CAS  Google Scholar 

  25. Zhang Y, Douglas GB, Kaksonen AH, Cui L, Ye Z (2019) Microbial reduction of nitrate in the presence of zero-valent iron. Sci Total Environ 646:1195–1203. https://doi.org/10.1016/j.scitotenv.2018.07.112

    Article  PubMed  CAS  Google Scholar 

  26. Lü Y, Li J, Li Y, Liang L, Dong H, Chen K, Yao C, Li Z, Li J, Guan X (2019) The roles of pyrite for enhancing reductive removal of nitrobenzene by zero-valent iron. Appl Catal B 242:9–18. https://doi.org/10.1016/j.apcatb.2018.09.086

    Article  CAS  Google Scholar 

  27. Du M, Zhang Y, Hussain I, Du X, Huang S, Wen W (2019) Effect of pyrite on enhancement of zero-valent iron corrosion for arsenic removal in water: a mechanistic study. Chemosphere 233:744–753. https://doi.org/10.1016/j.chemosphere.2019.05.197

    Article  PubMed  CAS  Google Scholar 

  28. Phenrat T, Lowry GV, Babakhani P (2019). In: Phenrat T, Lowry GV (eds) Nanoscale zerovalent iron particles for environmental restoration: from fundamental science to field scale engineering applications. Springer International Publishing, pp 1–43

  29. Perini JAdL, Silva BF, Nogueira RFP (2014) Zero-valent iron mediated degradation of ciprofloxacin – assessment of adsorption, operational parameters and degradation products. Chemosphere 117:345–352. https://doi.org/10.1016/j.chemosphere.2014.07.071

    Article  PubMed  CAS  Google Scholar 

  30. Zhao Y, Li Q, Shi Q, Xi B, Zhang X, Jian Z, Zhou G, Meng X, Mao X, Kang D, Gong B (2023) Mechanisms of phosphate removal by micron-scale zero-valent iron. Sep Purif Technol 319:123706. https://doi.org/10.1016/j.seppur.2023.123706

    Article  CAS  Google Scholar 

  31. Xin X, Li B, Liu X, Yang W, Liu Q (2023) Starting-up performances and microbial community shifts in the coupling process (SAPD-A) with sulfide autotrophic partial denitrification (SAPD) and anammox treating nitrate and ammonium contained wastewater. J Environ Manag 331:117298. https://doi.org/10.1016/j.jenvman.2023.117298

    Article  CAS  Google Scholar 

  32. APHA (1998) Standard methods for the examination of water and wastewater, 20th edition. American Public Health Association (APHA), American Water Works Association (AWWA), Water Pollution Control Federation (WPCF), Washington, DC, USA

  33. Lizama AC, Figueiras CC, Pedreguera AZ, Ruiz Espinoza JE (2019) Enhancing the performance and stability of the anaerobic digestion of sewage sludge by zero valent iron nanoparticles dosage. Bioresour Technol 275:352–359. https://doi.org/10.1016/j.biortech.2018.12.086

    Article  PubMed  CAS  Google Scholar 

  34. Boleij M, Pabst M, Neu TR, van Loosdrecht MCM, Lin Y (2018) Identification of glycoproteins isolated from extracellular polymeric substances of full-scale anammox granular sludge. Environ Sci Technol 52:13127–13135. https://doi.org/10.1021/acs.est.8b03180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhang R-C, Xu X-J, Chen C, Xing D-F, Shao B, Liu W-Z, Wang A-J, Lee D-J, Ren N-Q (2018) Interactions of functional bacteria and their contributions to the performance in integrated autotrophic and heterotrophic denitrification. Water Res 143:355–366. https://doi.org/10.1016/j.watres.2018.06.053

    Article  PubMed  CAS  Google Scholar 

  36. Usepa (2013) Secondary Drinking Water Standards: Guidance for Nuisance Chemicals. Accessed by April 2022.

  37. Li Q, Jiang Z, Zheng J, Xie Y, Liao Q, Zhao F, Yang Z, Lin Z, Si M, Yang W (2022) Interaction of pyrite with zerovalent iron with superior reductive ability via Fe(ii) regeneration. Environ Sci Nano 9:2713–2725. https://doi.org/10.1039/D2EN00349J

    Article  CAS  Google Scholar 

  38. Zhang C, Guo J, Lian J, Song Y, Lu C, Li H (2018) Bio-mixotrophic perchlorate reduction to control sulfate production in a step-feed sulfur-based reactor: a study of kinetics, ORP and bacterial community structure. Bioresour Technol 269:40–49. https://doi.org/10.1016/j.biortech.2018.08.084

    Article  PubMed  CAS  Google Scholar 

  39. Wang J, Li G, Yin H, An T (2020) Bacterial response mechanism during biofilm growth on different metal material substrates: EPS characteristics, oxidative stress and molecular regulatory network analysis. Environ Res 185:109451. https://doi.org/10.1016/j.envres.2020.109451

    Article  PubMed  CAS  Google Scholar 

  40. Uhlig I, Szargan R, Nesbitt HW, Laajalehto K (2001) Surface states and reactivity of pyrite and marcasite. Appl Surf Sci 179:222–229. https://doi.org/10.1016/S0169-4332(01)00283-5

    Article  CAS  Google Scholar 

  41. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730. https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  42. Wang C, Xu Y, Hou J, Wang P, Zhang F, Zhou Q, You G (2019) Zero valent iron supported biological denitrification for farmland drainage treatments with low organic carbon: performance and potential mechanisms. Sci Total Environ 689:1044–1053. https://doi.org/10.1016/j.scitotenv.2019.06.488

    Article  PubMed  CAS  Google Scholar 

  43. Tian T, Zhou K, Xuan L, Zhang J-X, Li Y-S, Liu D-F, Yu H-Q (2020) Exclusive microbially driven autotrophic iron-dependent denitrification in a reactor inoculated with activated sludge. Water Res 170:115300. https://doi.org/10.1016/j.watres.2019.115300

    Article  PubMed  CAS  Google Scholar 

  44. Xin X, Liu S, Qin J, Ye Z, Liu W, Fang S, Yang J (2021) Performances of simultaneous enhanced removal of nitrogen and phosphorus via biological aerated filter with biochar as fillers under low dissolved oxygen for digested swine wastewater treatment. Bioprocess Biosyst Eng 44:1741–1753. https://doi.org/10.1007/s00449-021-02557-z

    Article  PubMed  CAS  Google Scholar 

  45. Zhang M, Qiao S, Shao D, Jin R, Zhou J (2018) Simultaneous nitrogen and phosphorus removal by combined anammox and denitrifying phosphorus removal process. J Chem Technol Biot 93:94–104. https://doi.org/10.1002/jctb.5326

    Article  CAS  Google Scholar 

  46. Zhao Q, Chen K, Li J, Sun S, Jia T, Huang Y, Peng Y, Zhang L (2021) Pilot-scale evaluation of partial denitrification/anammox on nitrogen removal from low COD/N real sewage based on a modified process. Bioresour Technol 338:125580. https://doi.org/10.1016/j.biortech.2021.125580

    Article  PubMed  CAS  Google Scholar 

  47. Xin X, Liu Q, Werner D, Lu H, Qin J (2020) Start-up strategy and bacterial community analysis of SNAD process for treating anaerobic digester liquor of swine wastewater (ADLSW) in a continuous-flow biofilm reactor. Water Environ J 34:661–671. https://doi.org/10.1111/wej.12568

    Article  CAS  Google Scholar 

  48. Shao M-F, Zhang T, Fang HH-P (2010) Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol 88:1027–1042. https://doi.org/10.1007/s00253-010-2847-1

    Article  PubMed  CAS  Google Scholar 

  49. Nesbø CL, Charchuk R, Pollo SMJ, Budwill K, Kublanov IV, Haverkamp THA, Foght J (2019) Genomic analysis of the mesophilic Thermotogae genus Mesotoga reveals phylogeographic structure and genomic determinants of its distinct metabolism. Environ Microbiol 21:456–470. https://doi.org/10.1111/1462-2920.14477

    Article  PubMed  CAS  Google Scholar 

  50. Kong Z, Zhou Y, Fu Z, Zhang Y, Yan R (2022) Mechanism of stable power generation and nitrogen removal in the ANAMMOX-MFC treating low C/N wastewater. Chemosphere 296:133937. https://doi.org/10.1016/j.chemosphere.2022.133937

    Article  PubMed  CAS  Google Scholar 

  51. Xing W, Li J, Li D, Hu J, Deng S, Cui Y, Yao H (2018) Stable-Isotope probing reveals the activity and function of autotrophic and heterotrophic denitrifiers in nitrate removal from organic-limited wastewater. Environ Sci Technol 52:7867–7875. https://doi.org/10.1021/acs.est.8b01993

    Article  PubMed  CAS  Google Scholar 

  52. Liu S, Xin X, Yang W, Yan X, Dai Y, Hu J (2023) Influence mechanisms of BC filters of different pyrolysis temperatures on BAFs treating aquaculture wastewater. China Environ Sci 43:1131–1141. https://doi.org/10.19674/j.cnki.issn1000-6923.2023.0037

    Article  CAS  Google Scholar 

  53. Zhang J, Miao Y, Zhang Q, Sun Y, Wu L, Peng Y (2020) Mechanism of stable sewage nitrogen removal in a partial nitrification-anammox biofilm system at low temperatures: microbial community and EPS analysis. Bioresour Technol 297:122459. https://doi.org/10.1016/j.biortech.2019.122459

    Article  PubMed  CAS  Google Scholar 

  54. Peng Z, Lei Y, Liu Y, Wan X, Yang B, Pan X (2022) Fast start-up and reactivation of anammox process using polyurethane sponge. Biochem Eng J 177:108249. https://doi.org/10.1016/j.bej.2021.108249

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by National Natural Science Founda-tion of China (Grant No. 42377083); Open Project Program of Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education (No. GW202211).

Author information

Authors and Affiliations

Authors

Contributions

XL: methodology, investigation, data curation, data analysis, writing-original draft. XX: conceptualization, writing-review and editing, data curation, funding acquisition. WY: writing—review and editing, validation, data curation. XZ: investigation, data curation.

Corresponding author

Correspondence to Xin Xin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xin, X., Yang, W. et al. Effect mechanism of micron-scale zero-valent iron enhanced pyrite-driven denitrification biofilter for nitrogen and phosphorus removal. Bioprocess Biosyst Eng 46, 1847–1860 (2023). https://doi.org/10.1007/s00449-023-02941-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02941-x

Keywords

Navigation