Skip to main content
Log in

Investigation into the chemical modification of α-amylase using octenyl succinic anhydride: enzyme characterisation and stability studies

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The present study describes the chemical modification of α-amylase using succinic anhydride (SA), phthalic anhydride (PA) and a novel modifier viz. 2-octenyl succinic anhydride (2-OSA). SA-, PA- and 2-OSA-α-amylases displayed a 50%, 91% and 46% increase in stability at pH 9, respectively; as compared to unmodified α-amylase. PA-α-amylase showed a significant increase in Ea and ΔHa#, and a concomitant decrease in ΔSa#. The modified α-amylases exhibited improved thermostability as reflected by significant reductions in Kd and ΔSd#, and increments in t1/2, D-, Ed, ΔHd# and ΔGd# values. The modified α-amylases displayed variable stabilities in the presence of different surfactants, inhibitors, metal ions and organic solvents. Interestingly, the chemical modification was found to confer resistance against inactivation by Hg2+ on α-amylase. The conformational changes in modified α-amylases were investigated using intrinsic tryptophan fluorescence, ANS (extrinsic) tryptophan fluorescence, and dynamic fluorescence quenching. Both intrinsic and extrinsic tryptophan fluorescence spectra showed increased fluorescence intensity for the modified α-amylases. Chemical modification was found to induce a certain degree of structural rigidity to α-amylase, as shown by dynamic fluorescence quenching. Analysis of the CD spectra by the K2d method using the DichroWeb online tool indicated evident changes in the α-helix, β-sheet and random coil fractions of the α-amylase secondary structure, following chemical modification using anhydrides. PA-α-amylase exhibited the highest productivity in terms of hydrolysis of starch at 60 °C over a period of 5 h indicating potential in varied biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data generated and analysed during this study will be made available on request from the corresponding author.

References

  1. DeSantis G, Jones JB (1999) Chemical modification of enzymes for enhanced functionality. Curr Opin Biotechnol 10:324–330. https://doi.org/10.1016/S0958-1669(99)80059-7

    Article  CAS  PubMed  Google Scholar 

  2. Davis BG (2003) Chemical modification of biocatalysts. Curr Opin Biotechnol 14:379–386. https://doi.org/10.1016/S0958-1669(03)00098-3

    Article  CAS  PubMed  Google Scholar 

  3. Rodrigues RC, Berenguer-Murcia Á, Fernandez-Lafuente R (2011) Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Adv Synth Catal 353:2216–2238. https://doi.org/10.1002/adsc.201100163

    Article  CAS  Google Scholar 

  4. Qi D, Tann CM, Haring D, Distefano MD (2001) Generation of new enzymes via covalent modification of existing proteins. Chem Rev 101:3081–3111. https://doi.org/10.1021/cr000059o

    Article  CAS  PubMed  Google Scholar 

  5. Khaparde SS, Singhal RS (2001) Chemically modified papain for applications in detergent formulations. Bioresour Technol 78:1–4. https://doi.org/10.1016/S0960-8524(00)00178-4

    Article  CAS  PubMed  Google Scholar 

  6. Sangeetha K, Abraham TE (2006) Chemical modification of papain for use in alkaline medium. J Mol Catal B Enzym 38:171–177. https://doi.org/10.1016/j.molcatb.2006.01.003

    Article  CAS  Google Scholar 

  7. Szabo A, Kotorman M, Laczko I, Simon LM (2009) Improved stability and catalytic activity of chemically modified papain in aqueous organic solvents. Process Biochem 44:199–204. https://doi.org/10.1016/j.procbio.2008.10.008

    Article  CAS  Google Scholar 

  8. Kotormán M, Cseri A, Laczkó I, Simon LM (2009) Stabilization of α-chymotrypsin in aqueous organic solvents by chemical modification with organic acid anhydrides. J Mol Catal B Enzym 59:153–157. https://doi.org/10.1016/j.molcatb.2009.02.006

    Article  CAS  Google Scholar 

  9. Habibi AE, Khajeh K, Nemat-Gorgani M (2004) Chemical modification of lysine residues in Bacillus licheniformis α-amylase: Conversion of an endo- to an exo-type enzyme. J Biochem Mol Biol 37:642–647. https://doi.org/10.5483/bmbrep.2004.37.6.642

    Article  CAS  PubMed  Google Scholar 

  10. Xiong Y, Gao J, Zheng J, Deng N (2011) Effects of succinic anhydride modification on laccase stability and phenolics removal efficiency. Chinese J Catal 32:1584–1591. https://doi.org/10.1016/S1872-2067(10)60262-8

    Article  CAS  Google Scholar 

  11. Zhu P, Wang Y, Li G et al (2019) Preparation and application of a chemically modified laccase and copper phosphate hybrid flower-like biocatalyst. Biochem Eng J 144:235–243. https://doi.org/10.1016/j.bej.2019.01.020

    Article  CAS  Google Scholar 

  12. Yang H, He P, Yin Y et al (2021) Succinic anhydride-based chemical modification making laccase@Cu3(PO4)2 hybrid nanoflowers robust in removing bisphenol A in wastewater. Bioprocess Biosyst Eng 44:2061–2073. https://doi.org/10.1007/s00449-021-02583-x

    Article  CAS  PubMed  Google Scholar 

  13. Song HY, Yao JH, Liu JZ et al (2005) Effects of phthalic anhydride modification on horseradish peroxidase stability and structure. Enzyme Microb Technol 36:605–611. https://doi.org/10.1016/j.enzmictec.2004.12.018

    Article  CAS  Google Scholar 

  14. Liu JZ, Wang M (2007) Improvement of activity and stability of chloroperoxidase by chemical modification. BMC Biotechnol 7:1–8. https://doi.org/10.1186/1472-6750-7-23

    Article  CAS  Google Scholar 

  15. Nwagu TN, Okolo B, Aoyagi H, Yoshida S (2017) Chemical modification with phthalic anhydride and chitosan: viable options for the stabilization of raw starch digesting amylase from Aspergillus carbonarius. Int J Biol Macromol 99:641–647. https://doi.org/10.1016/j.ijbiomac.2017.03.022

    Article  CAS  PubMed  Google Scholar 

  16. Mossavarali S, Hosseinkhani S, Ranjbar B, Miroliaei M (2006) Stepwise modification of lysine residues of glucose oxidase with citraconic anhydride. Int J Biol Macromol 39:192–196. https://doi.org/10.1016/j.ijbiomac.2006.03.018

    Article  CAS  PubMed  Google Scholar 

  17. Liu JZ, Wang TL, Ji LN (2006) Enhanced dye decolorization efficiency by citraconic anhydride-modified horseradish peroxidase. J Mol Catal B Enzym 41:81–86. https://doi.org/10.1016/j.molcatb.2006.04.011

    Article  CAS  Google Scholar 

  18. Khajeh K, Naderi-Manesh H, Ranjbar B et al (2001) Chemical modification of lysine residues in Bacillus α-amylases: effect on activity and stability. Enzyme Microb Technol 28:543–549. https://doi.org/10.1016/S0141-0229(01)00296-4

    Article  CAS  PubMed  Google Scholar 

  19. Nwamaka T, Aoyagi H, Okolo B, Moneke A (2020) Citraconylation and maleylation on the catalytic and thermodynamic properties of raw starch saccharifying amylase from Aspergillus carbonarius. Heliyon 6:1–9. https://doi.org/10.1016/j.heliyon.2020.e04351

    Article  Google Scholar 

  20. Forde J, Tully E, Vakurov A et al (2010) Chemical modification and immobilisation of laccase from Trametes hirsuta and from Myceliophthora thermophila. Enzyme Microb Technol 46:430–437. https://doi.org/10.1016/j.enzmictec.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  21. Xue Y, Wu C, Branford-white CJ et al (2010) Chemical modification of stem bromelain with anhydride groups to enhance its stability and catalytic activity. J Mol Catal B Enzym 63:188–193. https://doi.org/10.1016/j.molcatb.2010.01.018

    Article  CAS  Google Scholar 

  22. Hassani L (2012) The effect of chemical modification with pyromellitic anhydride on structure, function, and thermal stability of horseradish peroxidase. Appl Biochem Biotechnol 167:489–497. https://doi.org/10.1007/s12010-012-9671-2

    Article  CAS  PubMed  Google Scholar 

  23. Alcalde M, Plou FJ, Andersen C et al (1999) Chemical modification of lysine side chains of cyclodextrin glycosyltransferase from Thermoanaerobacter causes a shift from cyclodextrin glycosyltransferase to α-amylase specificity. FEBS Lett 445:333–337. https://doi.org/10.1016/S0014-5793(99)00134-9

    Article  CAS  PubMed  Google Scholar 

  24. Ismaya WT, Hasan K, Kardi I et al (2013) Chemical modification of Saccharomycopsis fibuligera r64 α-amylase to improve its stability against thermal, chelator, and proteolytic inactivation. Appl Biochem Biotechnol 169:44–57. https://doi.org/10.1007/s12010-013-0164-8

    Article  CAS  Google Scholar 

  25. Ohnishi M, Suganuma T, Hiromi K (1974) The role of a tyrosine residue of bacterial liquefying α-amylase in the enzymatic hydrolysis of linear substrates as studied by chemical modification with acetic anhydride. J Biochem 76:7–13. https://doi.org/10.1093/oxfordjournals.jbchem.a130561

    Article  CAS  Google Scholar 

  26. Dewi AMP, Santoso U, Pranoto Y, Marseno DW (2022) Dual modification of sago starch via heat moisture treatment and octenyl succinylation to improve starch hydrophobicity. Polymers (Basel) 14:1–17. https://doi.org/10.3390/polym14061086

    Article  CAS  Google Scholar 

  27. Ji S, Xu T, Huang W et al (2022) Atmospheric pressure plasma jet pretreatment to facilitate cassava starch modification with octenyl succinic anhydride. Food Chem. https://doi.org/10.1016/j.foodchem.2021.130922

    Article  PubMed  Google Scholar 

  28. Zhang C, Ma M, Xu Y et al (2021) Octenyl succinic anhydride modification alters blending effects of waxy potato and waxy rice starches. Int J Biol Macromol 190:1–10. https://doi.org/10.1016/j.ijbiomac.2021.08.113

    Article  CAS  PubMed  Google Scholar 

  29. Sharma M, Singh AK, Yadav DN (2017) Rheological properties of reduced fat ice cream mix containing octenyl succinylated pearl millet starch. J Food Sci Technol 54:1638–1645. https://doi.org/10.1007/2Fs13197-017-2595-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zheng W, Ren L, Hao W et al (2022) Encapsulation of indole-3-carbinol in Pickering emulsions stabilized by OSA-modified high amylose corn starch: preparation, characterization and storage stability properties. Food Chem 386:132846. https://doi.org/10.1016/j.foodchem.2022.132846

    Article  CAS  PubMed  Google Scholar 

  31. Chen B-R, Wang Z-M, Lin J-W et al (2022) Improving emulsification performance of waxy maize starch by esterification combined with pulsed electric field. Food Hydrocoll 129:107655. https://doi.org/10.1016/j.foodhyd.2022.107655

    Article  CAS  Google Scholar 

  32. Bist Y, Kumar Y, Saxena DC (2022) Enhancing the storage stability of Pickering emulsion using esterified buckwheat starch with improved structure and morphology. LWT 161:113329. https://doi.org/10.1016/j.lwt.2022.113329

    Article  CAS  Google Scholar 

  33. Toumi S, Yahoum MM, Lefnaoui S, Hadjsadok A (2022) Synthesis and physicochemical evaluation of octenylsuccinated kappa-carrageenan: conventional versus microwave heating. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2022.119310

    Article  PubMed  Google Scholar 

  34. Zhao RX, Qi JR, Liu QR et al (2018) Fractionation and characterization of soluble soybean polysaccharide esterified of octenyl succinic anhydride and its effect as a stabilizer in acidified milk drinks. Food Hydrocoll 85:215–221. https://doi.org/10.1016/j.foodhyd.2018.07.023

    Article  CAS  Google Scholar 

  35. Omar Aziz M, Gharaghani M, Saeid HS et al (2021) Effect of octenylsuccination of pullulan on mechanical and barrier properties of pullulan-chickpea protein isolate composite film. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2021.107047

    Article  Google Scholar 

  36. Zhao L, Tong Q, Liu Y et al (2021) Fabrication and characterization of octenyl succinic anhydride modified pullulan micelles for encapsulating curcumin. J Sci Food Agric 102:2874–2884. https://doi.org/10.1002/jsfa.11628

    Article  CAS  PubMed  Google Scholar 

  37. Tang H, Liu Y, Li Y, Liu X (2022) Octenyl succinate acidolysis carboxymethyl sesbania gum with high esterification degree: preparation, characterization and performance. Polym Bull. https://doi.org/10.1007/s00289-022-04218-x

    Article  Google Scholar 

  38. Zhang T, Ding M, Tao L et al (2020) Octenyl succinic anhydride modification of bovine bone and fish skin gelatins and their application for fish oil-loaded emulsions. Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2020.106041

    Article  Google Scholar 

  39. Biswas A, Sessa DJ, Lawton JW et al (2005) Microwave assisted rapid modification of zein by octenyl succinic anhydride. Cereal Chem 82:1–3. https://doi.org/10.1094/CC-82-0001

    Article  CAS  Google Scholar 

  40. Kulchaiyawat C, Wang T, Han Z (2016) Improving albumen thermal stability using succinylation reaction with octenyl succinic anhydride. LWT - Food Sci Technol 73:630–639. https://doi.org/10.1016/j.lwt.2016.07.003

    Article  CAS  Google Scholar 

  41. Shah NN, Umesh KV, Singhal RS (2019) Hydrophobically modified pea proteins: synthesis, characterization and evaluation as emulsifiers in eggless cake. J Food Eng 255:15–23. https://doi.org/10.1016/j.jfoodeng.2019.03.005

    Article  CAS  Google Scholar 

  42. Altuna L, Herrera ML, Foresti ML (2018) Synthesis and characterization of octenyl succinic anhydride modified starches for food applications: a review of recent literature. Food Hydrocoll 80:97–110. https://doi.org/10.1016/j.foodhyd.2018.01.032

    Article  CAS  Google Scholar 

  43. Basak S, Singhal RS (2022) Succinylation of food proteins—a concise review. LWT 154:112866. https://doi.org/10.1016/j.lwt.2021.112866

    Article  CAS  Google Scholar 

  44. Acet Ö, Aksoy NH, Erdönmez D, Odabaşı M (2018) Determination of some adsorption and kinetic parameters of α-amylase onto Cu+2-PHEMA beads embedded column. Artif Cells, Nanomed Biotechnol 46:S538–S545. https://doi.org/10.1080/21691401.2018.1501378

    Article  CAS  PubMed  Google Scholar 

  45. Acet Ö, İnanan T, Acet BÖ et al (2021) α-Amylase immobilized composite cryogels: some studies on kinetic and adsorption factors. Appl Biochem Biotechnol 193:2483–2496. https://doi.org/10.1007/s12010-021-03559-z

    Article  CAS  PubMed  Google Scholar 

  46. Yoo Y, Hong J, Hatch RT (1987) Comparison of α-amylase activities from different assay methods. Biotechnol Bioeng 30:147–151

    Article  CAS  PubMed  Google Scholar 

  47. Habeeb AFSA (1966) Determination of free amino groups in proteins by Trinitrobenzenesulfonic acid. Anal Biochem 14:328–336

    Article  CAS  PubMed  Google Scholar 

  48. Siddiqui KS, Poljak A, De Francisci D et al (2010) A chemically modified α-amylase with a molten-globule state has entropically driven enhanced thermal stability. Protein Eng Des Sel 23:769–780. https://doi.org/10.1093/protein/gzq051

    Article  CAS  PubMed  Google Scholar 

  49. Whitmore L, Wallace BA (2008) Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. Biopolymers 89:392–400. https://doi.org/10.1002/bip.20853

    Article  CAS  PubMed  Google Scholar 

  50. Siddiqui KS, Ertan H, Poljak A, Bridge WJ (2022) Evaluating enzymatic productivity—the missing link to enzyme utility. Int J Mol Sci. https://doi.org/10.3390/ijms23136908

    Article  PubMed  PubMed Central  Google Scholar 

  51. Siddiqui KS, Poljak A, Cavicchioli R (2004) Improved activity and stability of alkaline phosphatases from psychrophilic and mesophilic organisms by chemically modifying aliphatic or amino groups using tetracarboxy-benzophenone derivatives. Cell Mol Biol (Noisy-le-grand) 50:657–667. https://doi.org/10.1170/T555

  52. Janser R, De CS, Ohara A et al (2014) A new approach for proteases production by Aspergillus niger based on the kinetic and thermodynamic parameters of the enzymes obtained. Biocatal Agric Biotechnol. https://doi.org/10.1016/j.bcab.2014.12.001

    Article  Google Scholar 

  53. Bhatti HN, Rashid MH, Asgher M et al (2007) Chemical modification results in hyperactivation and thermostabilization of Fusarium solani glucoamylase. Can J Microbiol 53:177–185. https://doi.org/10.1139/W06-094

    Article  CAS  PubMed  Google Scholar 

  54. Chang J, Lee Y, Fang S et al (2013) Recombinant expression and characterization of an organic-solvent-tolerant α-amylase from Exiguobacterium sp. DAU5. Appl Biochem Biotechnol 169:1870–1883. https://doi.org/10.1007/s12010-013-0101-x

    Article  CAS  PubMed  Google Scholar 

  55. Chakraborty S, Khopade A, Biao R et al (2011) Characterization and stability studies on surfactant, detergent and oxidant stable α-amylase from marine haloalkaliphilic Saccharopolyspora sp. A9. J Mol Catal B Enzym 68:52–58. https://doi.org/10.1016/j.molcatb.2010.09.009

    Article  CAS  Google Scholar 

  56. Roy JK, Rai SK, Mukherjee AK (2012) Characterization and application of a detergent-stable alkaline α-amylase from Bacillus subtilis strain AS-S01a. Int J Biol Macromol 50:219–229. https://doi.org/10.1016/j.ijbiomac.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  57. Singh A, Sharma A, Bansal S, Sharma P (2018) Comparative interaction study of amylase and surfactants for potential detergent formulation. J Mol Liq 261:397–401. https://doi.org/10.1016/j.molliq.2018.04.047

    Article  CAS  Google Scholar 

  58. Herrera-Márquez O, Fernández-Serrano M, Pilamala M et al (2019) Stability studies of an amylase and a protease for cleaning processes in the food industry. Food Bioprod Process 117:64–73. https://doi.org/10.1016/j.fbp.2019.06.015

    Article  CAS  Google Scholar 

  59. Shafiei M, Ziaee A-A, Amoozegar MA (2011) Purification and characterization of an organic-solvent-tolerant halophilic α-amylase from the moderately halophilic Nesterenkonia sp. strain F. J Ind Microbiol Biotechnol 38:275–281. https://doi.org/10.1007/s10295-010-0770-1

    Article  CAS  PubMed  Google Scholar 

  60. Negi S, Banerjee R (2009) Characterization of amylase and protease produced by Aspergillus awamori in a single bioreactor. Food Res Int 42:443–448. https://doi.org/10.1016/j.foodres.2009.01.004

    Article  CAS  Google Scholar 

  61. Najafi MF, Deobagkar D, Deobagkar D (2005) Purification and characterization of an extracellular α-amylase from Bacillus subtilis AX20. Protein Expr Purif 41:349–354. https://doi.org/10.1016/j.pep.2005.02.015

    Article  CAS  PubMed  Google Scholar 

  62. Bedade D, Deska J, Bankar S et al (2018) Fermentative production of extracellular amylase from novel amylase producer, Tuber maculatum mycelium, and its characterization. Prep Biochem Biotechnol. https://doi.org/10.1080/10826068.2018.1476876

    Article  PubMed  Google Scholar 

  63. Sondhi S, Kaur R, Madan J (2020) Purification and characterization of a novel white highly thermostable laccase from a novel Bacillus sp. MSK-01 having potential to be used as anticancer agent. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2020.12.082

    Article  PubMed  Google Scholar 

  64. Siddiqui KS, Shemsi AM, Anwar MA et al (1999) Partial and complete alteration of surface charges of carboxymethylcellulase by chemical modification: thermostabilization in water-miscible organic solvent. Enzyme Microb Technol 24:599–608. https://doi.org/10.1016/S0141-0229(98)00170-7

    Article  CAS  Google Scholar 

  65. Coates DR, Chin JM, Chung STL (2007) ANS fluorescence: potential to augment the identification of the external binding sites of proteins. Biochim Biophys Acta 1774:403–411. https://doi.org/10.1016/j.bbapap.2007.01.002

    Article  CAS  Google Scholar 

  66. Deshpande M, Sathe SK (2018) Interactions with 8-anilinonaphthalene-1-sulfonic acid (ANS) and surface hydrophobicity of Black Gram (Vigna mungo) Phaseolin. J Food Sci 83:1847–1855. https://doi.org/10.1111/1750-3841.14204

    Article  CAS  PubMed  Google Scholar 

  67. Sharma R, Kishore N (2008) Isothermal titration calorimetric and spectroscopic studies on (alcohol + salt) induced partially folded state of α-lactalbumin and its binding with 8-anilino-1-naphthalenesulfonic acid. J Chem Thermodyn 40:1141–1151. https://doi.org/10.1016/j.jct.2008.02.009

    Article  CAS  Google Scholar 

  68. Mátyus L, Szöllosi J, Jenei A (2006) Steady-state fluorescence quenching applications for studying protein structure and dynamics. J Photochem Photobiol B Biol 83:223–236. https://doi.org/10.1016/j.jphotobiol.2005.12.017

    Article  CAS  Google Scholar 

  69. Gil-Durán C, Sepúlveda RV, Rojas M et al (2022) The emergence of new catalytic abilities in an endoxylanase from Family GH10 by removing an intrinsically disordered region. Int J Mol Sci 23:1–14. https://doi.org/10.3390/ijms23042315

    Article  CAS  Google Scholar 

  70. Tian ML, Fang T, Du MY, Zhang FS (2016) Effects of Pulsed Electric Field (PEF) treatment on enhancing activity and conformation of α-amylase. Protein J 35:154–162. https://doi.org/10.1007/s10930-016-9649-y

    Article  CAS  PubMed  Google Scholar 

  71. Yu ZL, Zeng WC, Zhang WH et al (2014) Effect of ultrasound on the activity and conformation of α-amylase, papain and pepsin. Ultrason Sonochem 21:930–936. https://doi.org/10.1016/j.ultsonch.2013.11.002

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the University Grants Commission, Government of India for providing financial under NET-JRF scheme (Grant No.: 1589/(NET-JAN2017)) to carry out this research work. A special vote of thanks to Ms. Suchitra Tripathy (Novozymes), India for providing enzyme samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saaylee Danait-Nabar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Danait-Nabar, S., Singhal, R.S. Investigation into the chemical modification of α-amylase using octenyl succinic anhydride: enzyme characterisation and stability studies. Bioprocess Biosyst Eng 46, 645–664 (2023). https://doi.org/10.1007/s00449-023-02850-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-023-02850-z

Keywords

Navigation