Skip to main content
Log in

Groundwater contamination status in Malaysia: level of heavy metal, source, health impact, and remediation technologies

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Groundwater is defined as water that exists underground in voids or gaps in sediments and is extracted for human consumption from aquifers. It is critical to our daily lives because it contributes to the sustainability of our natural ecosystem while also providing economic benefits. Heavy metals are metallic compounds with a relatively high atomic weight and density compared to water. In Malaysia, heavy metal contamination of groundwater has become a concern due to rapid population growth, economic development, and a lack of environmental awareness. Environmental factors or their behaviors, such as density, viscosity, or volume, affect the distribution and transportation of heavy metals. The article discusses the difficulties created by the presence of heavy metals in groundwater supplies and the resulting health problems. Additionally, remediation methods are discussed for managing contaminated water to preserve the ecological environment for current and future generations, as well as their advantages and disadvantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abdullah NH, Mohamed N, Sulaiman LH, Zakaria TA, Rahim DA (2016) Potential Health Impacts of Bauxite Mining in Kuantan. Malaysian J Med Sci 23:1–8

    Google Scholar 

  2. Adnan LA, Yusoff ARM, Hadibarata T, Khudhair AB (2014) Biodegradation of bis-azo dye Reactive Black 5 by white-rot fungus Trametes gibbosa sp. WRF3 and its metabolite characterization. Water, Air, & Soil Pollution, 225, 2119. http://doi.org/https://doi.org/10.1007/s11270-014-2119-2

  3. Ahmad MK, Islam S, Rahman M, Haque M, Islam M (2010) Heavy metals in water, sediment and some fishes of Buriganga river, Bangladesh. Int J Environmental Res 4:321–332

    CAS  Google Scholar 

  4. Alabdula’aly AI, Khan MA (2009) Heavy metals in cooler waters in Riyadh, Saudi Arabia. Environ Monit Assess 157:23–28. https://doi.org/10.1007/s10661-008-0511-3

    Article  CAS  PubMed  Google Scholar 

  5. Al-Badaii F, Halim A, Shuhaimi-Othman M (2016) Evaluation of dissolved heavy metals in water of the Semenyih river (Peninsular Malaysia) using environmetric methods. Sains Malaysiana 45:841–852

    CAS  Google Scholar 

  6. Alfarrah N, Walraevens K 2018 Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water 10(2):143. https://doi.org/10.3390/w10020143

  7. Al Farraj DA, Elshikh MS, Al Khulaifi MM, Hadibarata T, Yuniarto A, Syafiuddin A (2019) Biotransformation and detoxification of reactive Solvent Green 3 dye using by halophilic Hortaea sp. International Biodeterioration Biodegradation 140:72–77. https://doi.org/10.1016/j.ibiod.2019.03.011

    Article  CAS  Google Scholar 

  8. Ali H, Khan E, Ilahi I (2019) Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J Chem 2019:6730305. https://doi.org/10.1155/2019/6730305

    Article  CAS  Google Scholar 

  9. Al Osman M, Yang F, Massey IY (2019) Exposure routes and health effects of heavy metals on children. Biometals 32:563–573. https://doi.org/10.1007/s10534-019-00193-5

    Article  CAS  PubMed  Google Scholar 

  10. Ashraf M, Yusoff I, Yusof M, Alias Y (2013) St8udy of contaminant transport at an open-tipping waste disposal site. Environ Sci Pollut Res 20:4689–4710. https://doi.org/10.1007/s11356-012-1423-x

    Article  CAS  Google Scholar 

  11. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377. https://doi.org/10.1016/j.arabjc.2010.07.019

    Article  CAS  Google Scholar 

  12. Bisht R, Agarwal M, Singh K (2017) Methodologies for removal of heavy metal ions from wastewater: An overview. Interdiscip Environ Rev 18:124–142. https://doi.org/10.1504/IER.2017.10008828

    Article  Google Scholar 

  13. Böhlke J-K (2002) Groundwater recharge and agricultural contamination. Hydrogeol J 10(1):153–179. https://doi.org/10.1007/s10040-001-0183-3

    Article  CAS  Google Scholar 

  14. Buschmann J, Berg M, Stengel C, Winkel L, Sampson M, Pham T, Viet P (2008) Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environ Int 34:756–764. https://doi.org/10.1016/j.envint.2007.12.025

    Article  CAS  PubMed  Google Scholar 

  15. Chai H, Lee N, Grinang J, Ling T, Sim S (2018) Assessment of heavy metals in water, fish and sediments of the Baleh River, Sarawak, Malaysia. Borneo J Resource Sci Techno 8:30–40. https://doi.org/10.33736/bjrst.822.2018

  16. Chakrabarty S, Sarma HP (2011) Heavy metal contamination of drinking water in Kamrup district, Assam, India. Environ Monit Assess 179:479–486. https://doi.org/10.1007/s10661-010-1750-7

    Article  CAS  PubMed  Google Scholar 

  17. Chew AW, Rahman NNA, Kadir MOA, Chen CC (2012) Dried and wet Trichoderma sp. biomass adsorption capacity on Ni, Cd and Cr in contaminated groundwater. Int Conf Environ Sci Technol 30:51–57

    CAS  Google Scholar 

  18. Choong TSY, Chuah TG, Robiah Y, Gregory Koay FL, Azni I (2007) Arsenic toxicity, health hazards and removal techniques from water: An overview. Desalination 217:139–166. https://doi.org/10.1016/j.desal.2007.01.015

    Article  CAS  Google Scholar 

  19. Chung JH, Hasyimah N, Hussein N (2021) Application of carbon nanotubes (CNTs) for remediation of emerging pollutants: A review. Trop Aqua Soil Pollut 2(1):13–26. https://doi.org/10.53623/tasp.v2i1.27

  20. Crini G, Lichtfouse E (2019) Advantages and disadvantages of techniques used for wastewater treatment. Environ Chem Lett 17(1):145–155. https://doi.org/10.1007/s10311-018-0785-9

    Article  CAS  Google Scholar 

  21. Chubaka CE, Whiley H, Edwards JW, Ross KE (2018) Lead, zinc, copper, and cadmium content of water from South Australian rainwater tanks. Int J Environ Res Public Health 15:1–12. https://doi.org/10.3390/ijerph15071551

    Article  CAS  Google Scholar 

  22. Duffus J (2002) Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl Chem 74:793–807. https://doi.org/10.1351/pac200274050793

    Article  CAS  Google Scholar 

  23. Elfidasari D, Ismi LN, Sugoro I (2020) Heavy metal concentration in water, sediment, and pterygoplichthys pardalis in the Ciliwung River, Indonesia. AACL Bioflux 13:1764–1778

    Google Scholar 

  24. El-Harouny M, Eldakroory S, Attalla S, Hasan N, Hegazy R (2008) Chemical quality of tap water versus bottled water: Evaluation of some heavy metals and elements content of drinking water in Dakahlia Governorate: Egypt. Mansoura Forensic Medicine & Clinical Toxicology Journal 16:1–15. https://doi.org/10.21608/mjfmct.2008.54090

  25. Faisal AAH, Sulaymon AH, Khaliefa QM (2018) A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. Int J Environ Sci Technol 15(5):1123–1138. https://doi.org/10.1007/s13762-017-1466-0

    Article  CAS  Google Scholar 

  26. Farraji H, Zaman N, Tajuddin R, Faraji H (2016) Advantages and disadvantages of phytoremediation A concise review. International Journal of Environmental & Technological science 2:69–75

    Google Scholar 

  27. Fernández-Luqueño F, López-Valdez F, Gamero P, Luna S, Aguilera-González EN, Martinez A, Pérez R (2013) Heavy metal pollution in drinking water-a global risk for human health: A review. Afr J Environ Sci Technol 7:567–584

    Google Scholar 

  28. Frichot JJH, Rubiyatno, Talukdar G (2021) Water quality assessment of roof-collected rainwater in Miri, Malaysia. Trop Aqua Soil Pollut 1(2):87–97. https://doi.org/10.53623/tasp.v1i2.19

  29. Ghazali FM, Syafalni S, Noor SM (2014) Public perception on the current solid waste management system in Malaysia: A comparative study of Matang Landfill and Bukit Tagar Sanitary Landfill (BTSL). World Appl Sci J 32:872–883

    Google Scholar 

  30. Hadibarata T, Tachibana S, Itoh K (2007) Biodegradation of Phenanthrene by Fungi Screened from Nature. Pak J Biol Sci 10:2535–2543

    Article  CAS  PubMed  Google Scholar 

  31. Hadibarata T, Syafiuddin A, Al-Dhabaan FA, Elshikh MS, Rubiyatno (2018) Biodegradation of mordant orange-1 using newly isolated strain Trichoderma harzianum RY44 and its metabolite appraisal. Bioprocess and Biosystem Engineering 41(5):621–632. https://doi.org/10.1007/s00449-018-1897-0

    Article  CAS  Google Scholar 

  32. Hadibarata, T, Khudhair AB, Salim MR (2012) Breakdown products in the metabolic pathway of anthracene degradation by a ligninolytic fungus Polyporus sp. S133. Water Air Soil Pollut 223:2201–2208. https://doi.org/10.1007/s11270-011-1016-1

    Article  CAS  Google Scholar 

  33. Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92(10):2355–2388. https://doi.org/10.1016/j.jenvman.2011.06.009

  34. Ho ZH, Adnan LA (2021) Phenol removal from aqueous solution by adsorption technique using coconut shell activated carbon. Trop Aqua Soil Pollut 1(2):98–107. https://doi.org/10.53623/tasp.v1i2.21

  35. Ibrahim T, Othman F, Mahmood N (2020). Baseline study of heavy metal pollution in a tropical river in a developing country. Sains Malaysiana 49:729–742. https://doi.org/10.17576/jsm-2020-4904-02

  36. Imo T, Latū F, Vaurasi V, Yoshida J, Amosa P, Sheikh MA (2014) Distribution of heavy metals in sediments at the commercial and fishing ports in Samoa. Int J Environ Sci Develop 5:517–521. https://doi.org/10.7763/ijesd.2014.v5.537

    Article  CAS  Google Scholar 

  37. Islam MA, Karim MR, Higuchi T, Sakakibara H, Sekine M (2014) Comparison of the trace metal concentration of drinking water supply options in southwest coastal areas of Bangladesh. Appl Water Sci 4:183–191. https://doi.org/10.1007/s13201-013-0140-z

    Article  CAS  Google Scholar 

  38. Ismail Z, Salim K, Othman SZ, Ramli AH, Shirazi SM, Karim R, Khoo SY (2013) Determining and comparing the levels of heavy metal concentrations in two selected urban river water. Measurement 46:4135–4144. https://doi.org/10.1016/j.measurement.2013.08.013

    Article  Google Scholar 

  39. Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72. https://doi.org/10.2478/intox-2014-0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kamran S, Shafaqat A, Samra H, Sana A, Samar F, Muhammad B, Saima A, Tauqeer HM (2013) Heavy metals contamination and what are the impacts on living organisms. Greener J Environ Manag Public Safety, 2:172–179. https://doi.org/10.15580/GJEMPS.2013.4.060413652

  41. Karavoltsos S, Sakellari A, Mihopoulos N, Dassenakis M, Scoullos MJ (2008) Evaluation of the quality of drinking water in regions of Greece. Desalination 224:317–329. https://doi.org/10.1016/j.desal.2007.06.013

    Article  CAS  Google Scholar 

  42. Khdary N, Gassim A (2014) The distribution and accretion of some heavy metals in Makkah wells. J Water Resour Prot 6:998. https://doi.org/10.4236/jwarp.2014.611094

    Article  CAS  Google Scholar 

  43. Kristanti RA, Kambe M, Hadibarata T, Toyama T, Tanaka Y, Mori K (2012) Isolation and characterization of 3-nitrophenol-degrading bacteria associated with rhizosphere of Spirodela polyrrhiza. Environ Sci Pollut Res 19:1852–1858. https://doi.org/10.1007/s11356-012-0836-x

    Article  CAS  Google Scholar 

  44. Kumar S, Islam ARMT, Islam HMT, Hasanuzzaman M, Ongoma V, Khan R, Mallick J (2021) Water resources pollution associated with risks of heavy metals from Vatukoula Goldmine region. Fiji J Environ Manag 293:112868. https://doi.org/10.1016/j.jenvman.2021.112868

    Article  CAS  Google Scholar 

  45. Kusin FM, Rahman MS, Madzin Z, Jusop S, Mohamat-Yusuff F, Ariffin M, Z Syakirin MS (2017) The occurrence and potential ecological risk assessment of bauxite mine-impacted water and sediments in Kuantan, Pahang, Malaysia. Environ Sci Pollut Res 24:1306–1321. https://doi.org/10.1007/s11356-016-7814-7

    Article  CAS  Google Scholar 

  46. Maharjan AK, Wong DRE, Rubiyatno R (2021) Level and distribution of heavy metals in Miri River, Malaysia. Trop Aqua Soil Pollut 1(2):74–86. https://doi.org/10.53623/tasp.v1i2.20

  47. Mahurpawar M (2015) Effects of heavy metals on human health. Int J Res: GRANTHAALAYAH 3:1–7. https://doi.org/10.29121/granthaalayah.v3.i9SE.2015.3282

    Article  Google Scholar 

  48. Mandour RA, Azab YA (2011) The prospective toxic effects of some heavy metals overload in surface drinking water of Dakahlia Governorate. Egypt Int J Occup Environ Med 2(4):245–253

    CAS  PubMed  Google Scholar 

  49. Mebrahtu G, Zerabruk S (2011) Concentration of heavy metals in drinking water from urban areas of the Tigray region. Northern Ethiopia Mekelle University of Ethiopia 3(1):105–121

    Google Scholar 

  50. Mokhtar NF, Aris AZ, Praveena SM (2015) Preliminary study of heavy metal (Zn, Pb, Cr, Ni) contaminations in Langat river Estuary, Selangor. Procedia Environ Sci 30:285–290. https://doi.org/10.1016/j.proenv.2015.10.051

    Article  CAS  Google Scholar 

  51. Mor S, Ravindra K, Dahiya RP, Chandra A (2006) Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site. Environ Monit Assess 118(1):435–456. https://doi.org/10.1007/s10661-006-1505-7

    Article  CAS  PubMed  Google Scholar 

  52. Morales-Muñoz H, Jha S, Bonatti M, Alff H, Kurtenbach S, Sieber S (2020) Exploring connections—Environmental change, food security and violence as drivers of migration—A critical review of research. Sustainability 12:5702. https://doi.org/10.3390/su12145702

    Article  Google Scholar 

  53. Obiri-Nyarko F, Grajales-Mesa SJ, Malina G (2014) An overview of permeable reactive barriers for in situ sustainable groundwater remediation. Chemosphere 111:243–259. https://doi.org/10.1016/j.chemosphere.2014.03.112

    Article  CAS  PubMed  Google Scholar 

  54. Ormerod S, Dobson M, Hildrew A, Townsend CR (2010) Multiple stressors in freshwater ecosystems. Freshw Biol 55:1–4. https://doi.org/10.1111/j.1365-2427.2009.02395.x

    Article  Google Scholar 

  55. Pohl A (2020) Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents. Water Air Soil Pollut 231(10):503. https://doi.org/10.1007/s11270-020-04863-w

    Article  CAS  Google Scholar 

  56. Purwoarminta A, Moosdorf N, Delinom RM (2018) Investigation of groundwater-seawater interactions: A review. IOP Conference Series: Earth and Environmental Science 118:012017. https://doi.org/10.1088/1755-1315/118/1/012017

    Article  Google Scholar 

  57. Rochaddi B, Atmodjo W, Satriadi A, Suryono CA, Irwani I, Widada S (2019) The heavy metal contamination in shallow groundwater at coastal areas of surabaya east java Indonesia. J Kelaut Trop 22(1):69. https://doi.org/10.14710/jkt.v22i1.4464

    Article  Google Scholar 

  58. Rubiyatno, The ZC, Lestari DV, Yulisa A, Musa M, Chen T-W, Darwish NM, AlMunqedhi BM, Hadibarata T (2022) Tolerance of earthworms in soil contaminated with polycyclic aromatic hydrocarbon. Ind Domest Waste Manag, 2(1), 9–16. https://doi.org/10.53623/idwm.v2i1.62

  59. Salman M, Demir M, Tang KHD, Cao LTT, Bunrith S, Chen T-W, Darwish NM, AlMunqedhi BM, Hadibarata T (2022) Removal of cresol red by adsorption using wastepaper. Ind Domest Waste Manag 2(1):1–8. https://doi.org/10.53623/idwm.v2i1.63

    Article  Google Scholar 

  60. Sasakova N, Gregova G, Takacova D, Mojzisova J, Papajova I, Venglovsky J, Szaboova T, Kovacova S (2018) Pollution of surface and ground water by sources related to agricultural activities. Front Sustain Food Syst 2:42. https://doi.org/10.3389/fsufs.2018.00042

    Article  Google Scholar 

  61. Saseetheran S, Selvam B, Awang NR, Yusoff M, Mohamed AS (2021) Concentration of the PM2.5 according to the sampling areas associated with the concentration of heavy metals and anions in Penang. J Trop Resour Sustain Sci 9:13–19. https://doi.org/10.47253/jtrss.v9i1.705

    Article  Google Scholar 

  62. Sharma PK, Mayank M, Ojha CSP, Shukla SK (2020) A review on groundwater contaminant transport and remediation. ISH J Hydraulic Eng 26:112–121

    Google Scholar 

  63. Shazili NAM, Yunus K, Ahmad AS, Abdullah N, Rashid MKA (2006) Heavy metal pollution status in the Malaysian aquatic environment. Aquat Ecosyst Health Manage 9:137–145. https://doi.org/10.1080/14634980600724023

    Article  CAS  Google Scholar 

  64. Shadi AMH, Kamaruddin MA, Niza NM, Emmanuela MI, Shaah MA, Yusoff MS, Allafi FA (2020) Characterization of stabilized leachate and evaluation of LPI from sanitary landfill in Penang, Malaysia. Desalin Water Treat 189:152–164. https://doi.org/10.5004/dwt.2020.25468

    Article  CAS  Google Scholar 

  65. Shuhaimi-Othman M, Ahmad A, Nadzifah Y, Azmah M (2012) Metal concentrations in Sungai Sedili Kecil, Johor, Peninsular Malaysia. J Trop Marine Ecosys 1:15–23

    Google Scholar 

  66. Simeonov V, Stratis JA, Samara C, Zachariadis G, Voutsa D, Anthemidis A, Sofoniou M, Kouimtzis T (2003) Assessment of the surface water quality in Northern Greece. Water Res 37:4119–4124. https://doi.org/10.1016/S0043-1354(03)00398-1

    Article  CAS  PubMed  Google Scholar 

  67. Singh R, Gautam N, Mishra A, Gupta R (2011) Heavy metals and living systems: An overview. Indian J Pharmacol 43(3):246–253. https://doi.org/10.4103/0253-7613.81505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sivamani S, Kavya M, Vinusha V (2022) Treatment of Hot Wash Liquor using Fly Ash. Trop Aquat Soil Pollut 2(1):27–33. https://doi.org/10.53623/tasp.v2i1.53

    Article  Google Scholar 

  69. Striegel J, Sanders DA, Veenstra JN (2001) Treatment of contaminated groundwater using permeable reactive barriers. Environ Geosci 8(4):258–265. https://doi.org/10.1046/j.1526-0984.2001.84004.x

    Article  CAS  Google Scholar 

  70. Suman SK, Arivazhagan N, Bhagyalakshmi L, Shekhar H, Shanmuga Priya P, Helan Vidhya T, Jagtap SS, Mohammad GB, Chikte SD, Chandragandhi S, Yeshitla A (2022) Detection and prediction of HMS from drinking water by analysing the adsorbents from residuals using deep learning. Adsorpt Sci Technol 2022:3265366. https://doi.org/10.1155/2022/3265366

    Article  CAS  Google Scholar 

  71. Talabi A, Kayode T (2019) Groundwater pollution and remediation. J Water Resour Prot 11:1–19. https://doi.org/10.4236/jwarp.2019.111001

    Article  CAS  Google Scholar 

  72. Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:939161. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  73. Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metal toxicity and the environment. Experientia Suppl 101:133–164. https://doi.org/10.1007/978-3-7643-8340-4_6

    Article  Google Scholar 

  74. Tiwary RK (2001) Environmental impact of coal mining on water regime and its management. Water Air Soil Pollut 132:185–199. https://doi.org/10.1023/A:1012083519667

    Article  CAS  Google Scholar 

  75. Van den Brand T, Snip L, Palmen L, Weij P, Sipma J, van Loosdrecht M (2018) Sulfate reducing bacteria applied to domestic wastewater. Water PracticeTechnol 13:542–554. https://doi.org/10.2166/wpt.2018.068

    Article  Google Scholar 

  76. Wyatt CJ, Fimbres C, Romo L, Méndez RO, Grijalva M (1998) Incidence of heavy metal contamination in water supplies in northern Mexico. Environ Res 76(2):114–119. https://doi.org/10.1006/enrs.1997.3795

    Article  CAS  PubMed  Google Scholar 

  77. Yahaghi J, Bazargan A (2022) Application of radiofrequency for decolorization Floc formation, and microorganism inactivation. Trop Aqua Soil Pollut 2(1):34–44. https://doi.org/10.53623/tasp.v2i1.54

    Article  Google Scholar 

  78. Yulisa A, Chairattanawat C, Park SH, Jannat MAH, Hwang S (2022) Effect of substrate-to-inoculum ratio and temperatures during the start-up of anaerobic digestion of fish waste. Ind Domest Waste Manag 2(1):17–29. https://doi.org/10.53623/idwm.v2i1.80

    Article  Google Scholar 

  79. Zainol NFM, Zainuddin AH, Looi LJ, Aris AZ, Isa NM, Sefie A, Yusof KMKK (2021) Spatial analysis of groundwater hydrochemistry through integrated multivariate analysis: A case study in the urbanized langat basin, Malaysia. Int J Environ Res Public Health 18. https://doi.org/10.3390/ijerph18115733

Download references

Acknowledgements

We would like to thank to the World Class University—Adjunct Professor Program 2022 from Universitas Diponegoro Number 232/UN7.A/HK/IX/2022. The authors also would like to show our gratitude to the World Class Professor program managed by the Indonesian Ministry of Education, Culture, Research and Technology—Directorate General of Higher Education, Research and Technology Number 2817/E4.1/KK.04.05/2021. The authors also extend their appreciation to the Researchers supporting project number (RSP-2021/193), King Saud University, Riyadh, Saudi Arabia. Collaboration from Curtin University, Malaysia, University of Arkansas, USA, and King Saud University, Saudi Arabia is highly appreciated.

Funding

Universitas Diponegoro World Class University-Adjunct Professor Program 2022, Nomor: 232/UN7.A/HK/IX/2022, World Class Professor Program managed by the Indonesian Ministry of Education, Culture, Research and Technology—Directorate General of Higher Edmyucation, Research and Technology, 2817/E4.1/KK.04.05/2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aris Ismanto or Tony Hadibarata.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismanto, A., Hadibarata, T., Widada, S. et al. Groundwater contamination status in Malaysia: level of heavy metal, source, health impact, and remediation technologies. Bioprocess Biosyst Eng 46, 467–482 (2023). https://doi.org/10.1007/s00449-022-02826-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02826-5

Keywords

Navigation