Skip to main content
Log in

Detoxification of lignocellulosic prehydrolyzate by lignin nanoparticles prepared from biorefinery biowaste to improve the ethanol production

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study proposed a recyclable p-toluenesulfonic acid (p-TsOH) fractionation process for co-producing lignin nanoparticles (LNPs) and fermentable sugars from lignocellulosic biorefinery biowaste (enzymatic hydrolysis residue (EHR)). The prepared LNPs were used to detoxify the inhibitors in the xylose-rich prehydrolyzate for improving ethanol production. Results showed that the EHR was fractionated into a cellulose-rich water-insoluble solid (WIS) fraction and a lignin-rich spent liquor (SL) fraction. Cellulase hydrolysis of WIS produced 97.7% of glucose yield, while the LNPs of an average particle size of 98.0 nm with 76.3 % yield (based on the untreated EHR) were obtained from the diluted SL. LNPs demonstrated higher detoxification ability than EHR at the same dosage. Moreover, the fermentability of the detoxified xylose-rich prehydrolyzate was significantly improved. The sugar utilization ratio was 94.8%, and the ethanol yield reached its peak value of 85.4% after 36 h of fermenting the detoxified xylose-rich prehydrolyzate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kee SH, Chiongson JBV, Saludes JP, Vigneswari S, Ramakrishna S, Bhubalan K (2021) Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories-a viable domain of circular economy. Environ Pollut 271:116311. https://doi.org/10.1016/j.envpol.2020.116311

    Article  CAS  PubMed  Google Scholar 

  2. Morone P, Yilan G (2020) A paradigm shift in sustainability: from lines to circles. Acta Innov 36:5–16. https://doi.org/10.32933/actainnovations.36.1

    Article  Google Scholar 

  3. Liu Q, Ba Y, Chen H, Chen M, Sang Y, Wu K, Ma Z, Ma Y, Li Y (2021) Catalytic conversion of enzymatic hydrolysis lignin into cycloalkanes over a gamma-alumina supported nickel molybdenum alloy catalyst. Bioresour Technol 323:124634. https://doi.org/10.1016/j.biortech.2020.124634

    Article  CAS  PubMed  Google Scholar 

  4. Haq I, Mazumder P, Kalamdhad AS (2020) Recent advances in removal of lignin from paper industry wastewater and its industrial applications-a review. Bioresour Technol 312:123636. https://doi.org/10.1016/j.biortech.2020.123636

    Article  CAS  PubMed  Google Scholar 

  5. Li Q, Wang L, Lin J (2017) Co-assembly behaviour of Janus nanoparticles and amphiphilic block copolymers in dilute solution. Phys Chem Chem Phys 19:24135–24145. https://doi.org/10.1039/C7CP04501H

    Article  CAS  PubMed  Google Scholar 

  6. Frangville C, Rutkevičius M, Richter AP, Velev OD, Stoyanov SD, Paunov VN (2012) Fabrication of environmentally biodegradable lignin nanoparticles. ChemPhysChem 13:4235–4243. https://doi.org/10.1002/cphc.201200537

    Article  CAS  PubMed  Google Scholar 

  7. Xiong F, Han Y, Wang S, Li G, Qin T, Chen Y, Chu F (2017) Preparation and formation mechanism of renewable lignin hollow nanospheres with a single hole by self-assembly. ACS Sustain Chem Eng 5:2273–2281. https://doi.org/10.1021/acssuschemeng.6b02585

    Article  CAS  Google Scholar 

  8. Lievonen M, Valle-Delgado JJ, Mattinen ML, Hult EL, Lintinen K, Kostiainen MA, Paananen A, Szilvay GR, Setälä H, Österberg M (2016) A simple process for lignin nanoparticle preparation. Green Chem 18:1416–1422. https://doi.org/10.1039/C5GC01436K

    Article  CAS  Google Scholar 

  9. Österberg M, Sipponen MH, Mattos BD, Rojas OJ (2020) Spherical lignin particles: a review on their sustainability and applications. Green Chem 22:2712–2733. https://doi.org/10.1039/D0GC00096E

    Article  Google Scholar 

  10. Zhu D, Hyun S, Pignatello JJ, Lee LS (2004) Evidence for π-π electron donor-acceptor interactions between π-donor aromatic compounds and π-acceptor sites in soil organic matter through pH effects on sorption. Environ Sci Technol 38:4361–4368. https://doi.org/10.1021/es035379e

    Article  CAS  PubMed  Google Scholar 

  11. Morais ARC, Pinto JV, Nunes D, Roseiro LB, Oliveira MC, Fortunato E, Bogel-Łukasik R (2016) Imidazole: prospect solvent for lignocellulosic biomass fractionation and delignification. ACS Sustain Chem Eng 4(3):1643–1652. https://doi.org/10.1021/acssuschemeng.5b01600

    Article  CAS  Google Scholar 

  12. Pereira PMA, Bernardo JR, Roseiro LB, Gírio F, Łukasik RM (2021) Imidazole processing of wheat straw and eucalyptus residues-comparison of pre-treatment conditions and their influence on enzymatic hydrolysis. Molecules 26(24):7591. https://doi.org/10.3390/molecules26247591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chen L, Dou J, Ma Q, Li N, Wu R, Bian H, Yelle DJ, Vuorinen T, Fu S, Pan X, Zhu JY (2017) Rapid and near-complete dissolution of wood lignin at ≤80 °C by a recyclable acid hydrotrope. Sci Adv 3:e1701735. https://doi.org/10.1126/sciadv.1701735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu JY, Chen L, Cai C (2021) Acid hydrotropic fractionation of lignocelluloses for sustainable biorefinery: advantages, opportunities, and research needs. ChemSusChem 14:3031–3046. https://doi.org/10.1002/cssc.202100915

    Article  CAS  PubMed  Google Scholar 

  15. Yang M, Zhang X, Guan S, Dou Y, Gao X, Miao L (2020) Green preparation of lignin nanoparticles in an aqueous hydrotropic solution and application in biobased nanocomposite films. Holzforschung 75:463–473. https://doi.org/10.1515/hf-2020-0021

    Article  CAS  Google Scholar 

  16. Ghose TK (1987) Measurements of cellulase activities. Pure Appl Chem 59:257–268. https://doi.org/10.1351/pac198759020257

    Article  CAS  Google Scholar 

  17. Zhu J, Yang J, Zhu Y, Zhang L, Yong Q, Xu Y, Li X, Yu S (2014) Cause analysis of the effects of acid-catalyzed steam-exploded corn stover prehydrolyzate on ethanol fermentation by Pichia stipitis CBS 5776. Bioproc Biosyst Eng 37:2215–2222. https://doi.org/10.1007/s00449-014-1199-0

    Article  CAS  Google Scholar 

  18. Zhu J, Zhu Y, Jiang F, Xu Y, Ouyang J, Yu S (2013) An integrated process to produce ethanol, vanillin, and xylooligosaccharides from Camellia oleifera shell. Carbohyd Res 382:52–57. https://doi.org/10.1016/j.carres.2013.10.007

    Article  CAS  Google Scholar 

  19. Zhu J, Zhang H, Jiao N, Xiao Y, Shi D, Xu Y (2021) A green process for producing xylooligosaccharides from poplar: endoxylanase assisted autohydrolysis, activated carbon separation, and spent liquor for rice growth. Ind Crop Prod 174:114187. https://doi.org/10.1016/j.indcrop.2021.114187

    Article  CAS  Google Scholar 

  20. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure of National Renewable Energy Laboratory (NREL), Golden

    Google Scholar 

  21. Zhai R, Hu J, Chen X, Xu Z, Wen Z, Jin M (2020) Facile synthesis of manganese oxide modified lignin nanocomposites from lignocellulosic biorefinery wasters for dye removal. Bioresour Technol 315:123846. https://doi.org/10.1016/j.biortech.2020.123846

    Article  CAS  PubMed  Google Scholar 

  22. Folin O, Denis W (1915) A colorimetric method for the determination of phenol (and phenol derivatives) in urine. J Biol Chem 22:305–308. https://doi.org/10.1016/S0021-9258(18)87648-7

    Article  CAS  Google Scholar 

  23. Wen P, Zhang T, Xu Y, Zhang J (2020) Co-production of xylooligosaccharides and monosaccharides from poplar by a two-step acetic acid and sodium chlorite pretreatment. Ind Crop Prod 152:112500. https://doi.org/10.1016/j.indcrop.2020.112500

    Article  CAS  Google Scholar 

  24. Abdelaziz OY, Hulteberg CP (2017) Physicochemical characterisation of technical lignins for their potential valorisation. Waste Biomass Valori 8:859–869. https://doi.org/10.1007/s12649-016-9643-9

    Article  CAS  Google Scholar 

  25. Björklund L, Larsson S, Jönsson LJ, Reimann A, Nilvebrant NO (2002) Treatment with lignin residue. In: Finkelstein M, McMillan JD, Davison BH (eds) Biotechnology for fuels and chemicals. Appl Biochem Biotechnol 98-100:563–575. Humana Press, Totowa, NJ

    Google Scholar 

Download references

Acknowledgements

The research was supported by the National Key Research and Development Program of China (2017YFD0601001) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Funding

The National Key Research and Development Program of China, 2017YFD0601001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Jiao, N., Zhang, H. et al. Detoxification of lignocellulosic prehydrolyzate by lignin nanoparticles prepared from biorefinery biowaste to improve the ethanol production. Bioprocess Biosyst Eng 45, 1011–1018 (2022). https://doi.org/10.1007/s00449-022-02720-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-022-02720-0

Keywords

Navigation