Skip to main content
Log in

Biogenic synthesis and characterization of selenium nanoparticles and their applications with special reference to antibacterial, antioxidant, anticancer and photocatalytic activity

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Oxyanions of selenium, selenite (SeO3)2− and selenate (SeO4)2− are toxic to terrestrial and aquatic biota but few microorganisms including cyanobacteria are resistant to high levels of selenite. Cyanobacteria evade selenite toxicity through bioreduction and synthesis of selenium nanoparticles (SeNPs). In this study, extracellular biosynthesis of SeNPs (Se0) using cyanobacterium, Anabaena sp. PCC 7120 on exposure to sodium selenite and characterization was done by using UV–visible spectroscopy, SEM–EDX, TEM and FTIR analyses which confirmed spherical shape with size range of 5–50 nm diameter. These biogenic SeNPs demonstrated significant antibacterial and anti-biofilm activity against bacterial pathogens. Furthermore, these SeNPs showed high antioxidant activity at minimum concentration of 50 µg/mL and significant anti-proliferative activity against HeLa cell line with IC50 value of 5.5 µg/mL. The SeNPs also induced accumulation of cancer cells in the sub-G1 phase which was clearly observed in cellular and nuclear morphology. These biofabricated SeNPs also reduced and decolorized toxic methylene blue dye significantly through photocatalytic degradation. Therefore Anabaena sp. PCC 7120 may be employed as a green bioresource to synthesize SeNPs with potential applications in medicine and environmental bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

(Modified from Sabouri et al. Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. https://doi.org/10.1080/10667857.2020.1863573)

Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ojeda JJ, Merroun ML, Tugarova AV et al (2020) Developments in the study and applications of bacterial transformations of selenium species. Crit Rev Biotechnol 40(8):1250–1264. https://doi.org/10.1080/07388551.2020.1811199

    Article  CAS  PubMed  Google Scholar 

  2. Allan CB, Lacourciere GM, Stadtman TC (1999) Responsiveness of selenoproteins to dietary selenium. Ann Rev Nutr 19(1):1–16

    Article  CAS  Google Scholar 

  3. Böck A, Forchhammer K, Heider J, Leinfelder W et al (1999) Selenocysteine: the 21st amino acid. Mol Microbiol 5(3):515–520

    Article  Google Scholar 

  4. Arthur JR, McKenzie RC, Beckett GJ (2003) Selenium in the immune system. J Nutr 133(5):1457–1459

    Article  Google Scholar 

  5. Zeng H, JrJF C (2008) Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J Nutr Biochem 19(1):1–7

    Article  PubMed  Google Scholar 

  6. Chen J (2012) An original discovery: selenium deficiency and Keshan disease (an endemic heart disease). Asia Pacific J Clin Nutri 21(3):320–326

    Google Scholar 

  7. Morris JS, Crane SB (2013) Selenium toxicity from a misformulated dietary supplement, adverse health effects, and the temporal response in the nail biologic monitor. Nutrients 5(4):1024–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ghosh A, Mohod AM, Paknikar KM, Jain RK (2008) Isolation and characterization of selenite- and selenate-tolerant microorganisms from selenium-contaminated sites. World J Microbiol Biotechnol 24(8):1607–1611

    Article  CAS  Google Scholar 

  9. Eswayah AS, Smith TJ, Gardiner PH (2016) Microbial transformations of selenium species of relevance to bioremediation. Appl Environ Microbiol 82(16):4848–59. https://doi.org/10.1128/AEM.00877-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tugarova A, Kamnev AA (2017) Proteins in microbial synthesis of selenium nanoparticles. Talanta 174:539–547. https://doi.org/10.1016/j.talanta.2017.06.013

    Article  CAS  PubMed  Google Scholar 

  11. Sabouri Z, Akbari A, Hosseini HA, Khatami M, Darroudi M (2020) Egg white-mediated green synthesis of NiO nanoparticles and study of their cytotoxicity and photocatalytic activity. Polyhedron. https://doi.org/10.1016/j.poly.2020.114351

    Article  Google Scholar 

  12. Najjar M, Hosseini HA, Masoudi A, Hashemzadeh A, Darroudi M (2020) Preparation of tin oxide (IV) nanoparticles by a green chemistry method and investigation of its role in the removal of organic dyes in water purification. Res Chem Intermed 46:2155–2168. https://doi.org/10.1007/s11164-020-04084-0

    Article  CAS  Google Scholar 

  13. Sabouri Z, Akbari A, Hosseini HA, Hashemzadeh A, Darroudi M (2019) Bio-based synthesized NiO nanoparticles and evaluation of their cellular toxicity and wastewater treatment effects. J Mol Struc 1191:101–109. https://doi.org/10.1016/j.molstruc.2019.04.075

    Article  CAS  Google Scholar 

  14. Avazéri C, Turner RJ, Pommier J, Weiner JH, Giordano G, Verméglio A (1997) Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite. Microbiol 143(4):1181–1189

    Article  Google Scholar 

  15. Hunter WJ, Kuykendall LD (2007) Reduction of selenite to elemental red selenium by Rhizobium sp strain B1. Curr Microbiol 55(4):344–349

    Article  CAS  PubMed  Google Scholar 

  16. Afkar E, Lisak J, Saltikov C, Basu P, OremLand RS, Stolz JF (2003) The respiratory arsenate reductase from Bacillus selenitireducens strain MLS10. FEMS Microbiol Lett 226(1):107–112

    Article  CAS  PubMed  Google Scholar 

  17. Hosnedlova B, Kepinska M, Skalickova S et al (2018) Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomed 13:2107–2128. https://doi.org/10.2147/IJN.S157541

    Article  CAS  Google Scholar 

  18. Geoffrion LD, Hesabizadeh T, Medina-Cruz D et al (2020) Naked selenium nanoparticles for antibacterial and anticancer treatments. ACS Omega 5:2660–2669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Khurana A, Tekula S, Saifi MA et al (2019) Therapeutic applications of selenium nanoparticles. Biomed Pharmacotherapy 111:802–812. https://doi.org/10.1016/j.biopha.2018.12.146

    Article  CAS  Google Scholar 

  20. Stolz J, Basu P, OremLand R (2002) Microbial transformation of elements: the case of arsenic and selenium. Intern Microbiol 5(4):201–207

    Article  CAS  Google Scholar 

  21. Valls M, De Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26(4):327–338

    Article  CAS  PubMed  Google Scholar 

  22. Brayner R, Barberousse H, Hemadi M et al (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7(8):2696–2708. https://doi.org/10.1166/jnn.2007.600

    Article  CAS  PubMed  Google Scholar 

  23. Gouget B, Avoscan L, Sarret G, Collins R, Carriere M (2005) Resistance, accumulation and transformation of selenium by the cyanobacterium Synechocystis sp PCC 6803 after exposure to inorganic Se VI or Se IV. Radiochim Acta 93(11):683–689

    Article  CAS  Google Scholar 

  24. Singh G, Babele PK, Kumar A et al (2014) Synthesis of ZnO nanoparticles using the cell extract of the cyanobacterium, Anabaena strain L 31 and it’s conjugation with UV-B absorbing compound shinorine. J Photochem Photobiol B 138:55–62. https://doi.org/10.1016/j.jphotobiol.2014.04.030

    Article  CAS  PubMed  Google Scholar 

  25. Wadhwani SA, Shedbalkar UU, Singh R, Chopade BA (2016) Biogenic selenium nanoparticles: current status and future prospects. Appl Microbiol Biotechnol 100(6):2555–2566

    Article  CAS  PubMed  Google Scholar 

  26. Lampis S, Zonaro E, Bertolini C et al (2017) Selenite biotransformation and detoxification by Stenotrophomonas maltophilia SeITE02: novel clues on the route to bacterial biogenesis of selenium nanoparticles. J Hazard Mater 324:3–14

    Article  CAS  PubMed  Google Scholar 

  27. Kumar HD, Prakash G (1971) Toxicity of selenium to the blue-green algae, Anacystis nidulans and Anabaena variabilis. Ann Bot 35:697–705

    Article  CAS  Google Scholar 

  28. Sielicki M, Burnham JC (1973) The effect of selenite on the physiological and morphological properties of the blue-green alga Phormidium luridum var. olivacea. J Phycol 9:509–514

    CAS  Google Scholar 

  29. Li Z, Guo S, Li L (2003) Bioeffects of selenite on the growth of Spirulina platensis and its biotransformation. Bioresour Technol 89:171–176

    Article  CAS  PubMed  Google Scholar 

  30. Abdel-Hamid MI, Skulberg OM (1995) Effect of selenium on the growth of some selected green and blue-green algae. Lakes Reserv Res Manag 1:205–211

    Article  Google Scholar 

  31. Tugarova AV, Mamchenkova PV, Khanadeev VA, Kamnev AA (2020) Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterization. New Biotechnol 58:17–24. https://doi.org/10.1016/j.nbt.2020.02.003

    Article  CAS  Google Scholar 

  32. Zavřel T, Sinetova MA, Červený J (2015) Measurement of chlorophyll a and carotenoids concentration in cyanobacteria. Bio-Protoc 5(9):1–5

    Article  Google Scholar 

  33. Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89(1):27–41

    Article  CAS  PubMed  Google Scholar 

  34. Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144:307–313

    Article  CAS  Google Scholar 

  35. Vaigankar DC, Dubey SK, Mujawar SY, D’Costa A, Shyama SK (2018) Tellurite biotransformation and detoxification by Shewanella baltica with simultaneous synthesis of tellurium nanorods exhibiting photo-catalytic and anti-biofilm activity. Ecotoxicol Environ Safety 165:516–526. https://doi.org/10.1016/j.ecoenv.2018.08.111

    Article  CAS  PubMed  Google Scholar 

  36. Pavanello A, Blasco A, Johnston PF, Miranda MA, Marin ML (2020) Enhanced photodegradation of synthetic dyes mediated by ag3po4-based semiconductors under visible light irradiation. Catalysts 10:774. https://doi.org/10.3390/catal10070774

    Article  CAS  Google Scholar 

  37. Tripathi D, Modi A, Narayan G, Rai SP (2019) Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater Sci Engg C 100:152–164. https://doi.org/10.1016/j.msec.2019.02.113

    Article  CAS  Google Scholar 

  38. Thaipong K, Boonprakob U, Crosby K et al (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675

    Article  CAS  Google Scholar 

  39. Baygar T, Ugur A (2017) In vitro evaluation of antimicrobial and antibiofilm potentials of silver nanoparticles biosynthesised by Streptomyces griseorubens. IET Nanobiotechnol 11(6):677–681. https://doi.org/10.1049/iet-nbt.2016.0199

    Article  PubMed Central  Google Scholar 

  40. Awasthee N, Rai V, Verma SS et al (1862) (2018) Anti-cancer activities of Bharangin against breast cancer: evidence for the role of NF-κB and lncRNAs. Biochim Biophys Acta Gen Subj 12:2738–2749. https://doi.org/10.1016/j.bbagen.2018.08.016

    Article  CAS  Google Scholar 

  41. Islam SK, Sohel MA, Lombardi JR (2014) Coupled exciton and charge-transfer resonances in the raman enhancement of phonon modes of CdSe quantum dots (QDs). J Phys Chem C 118:19415–1942. https://doi.org/10.1021/jp5051035

    Article  CAS  Google Scholar 

  42. Hnain A, Brooks J, Lefebvre DD (2013) The synthesis of elemental selenium particles by Synechococcus leopoliensis. Appl Microbiol Biotechnol 97:10511–10519

    Article  CAS  PubMed  Google Scholar 

  43. Kamnev AA, Dyatlova YA, Kenzhegulov OA et al (2021) Fourier transform infrared (FTIR) spectroscopic analyses of microbiological samples and biogenic selenium nanoparticles of microbial origin: sample preparation effects. Molecules 26:1146. https://doi.org/10.3390/molecules26041146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kamnev AA, Mamchenkova PV, Dyatlova YA, Tugarova AV (2017) FTIR spectroscopic studies of selenite reduction by cells of the rhizobacterium Azospirillum brasilense Sp7 and the formation of selenium nanoparticles. J Mol Struc 1140:106–112. https://doi.org/10.1016/j.molstruc.2016.12.003

    Article  CAS  Google Scholar 

  45. Kiffney P, Knight A (1990) The toxicity and bioaccumulation of selenate, selenite and seleno-L-methionine in the cyanobacterium Anabaena flos-aquae. Arch Environ Contam Toxicol 19:488–494

    Article  CAS  PubMed  Google Scholar 

  46. Alagesan V, Venugopal S (2019) Green synthesis of selenium nanoparticle using leaves extract of withania somnifera and its biological applications and photocatalytic activities. BioNanoScience 9:105–116. https://doi.org/10.1007/s12668-018-0566-8

    Article  Google Scholar 

  47. El-Sayed ESR, Abdelhakim HK, Ahmed AS (2020) Solid-state fermentation for enhanced production of selenium nanoparticles by gamma-irradiated Monascus purpureus and their biological evaluation and photocatalytic activities. Bioproc Biosyst Eng 43:797–809. https://doi.org/10.1007/s00449-019-02275-7

    Article  CAS  Google Scholar 

  48. Tripathi RM, Hameed P, Rao RP et al (2020) Biosynthesis of highly stable fluorescent selenium nanoparticles and the evaluation of their photocatalytic degradation of dye. Bio Nano Sci 10:389–396. https://doi.org/10.1007/s12668-020-00718-0

    Article  Google Scholar 

  49. Velayati M, Hassani H, Sabouri Z, Mostafapour A, Darroudi M (2021) Biosynthesis of Se-nanorods using gum arabic (GA) and investigation of their photocatalytic and cytotoxicity effects. Inorg Chem Communi. https://doi.org/10.1016/j.inoche.2021.108589

    Article  Google Scholar 

  50. Sabouri Z, Sabouri M, Amiri MS, Khatami M, Darroudi M (2020) Plant-based synthesis of cerium oxide nanoparticles using Rheum turkestanicum extract and evaluation of their cytotoxicity and photocatalytic properties. Mater Technol. https://doi.org/10.1080/10667857.2020.1863573

    Article  Google Scholar 

  51. Piella J, Bastús NG, Casals E, Puntes V (2013) Characterizing nanoparticles reactivity: structure photocatalytic activity relationship. J Phys Conference Series. https://doi.org/10.1088/1742-6596/429/1/012040

    Article  Google Scholar 

  52. Khiralla GM, El-Deeb BA (2015) Antimicrobial and antibiofilm effects of selenium nanoparticles on some food borne pathogens. LWT-Food Sci Technol 63(2):1001–1007. https://doi.org/10.1016/j.lwt.2015.03.086

    Article  CAS  Google Scholar 

  53. Patel V, Berthold D, Puranik P, Gantar M (2015) Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnol Rep 5:112–119

    Article  Google Scholar 

  54. Sonker AS, Richa Pathak J et al (2017) Characterization and in vitro antitumor, antibacterial and antifungal activities of green synthesized silver nanoparticles using cell extract of Nostoc sp strain HKAR2. Can J Biotech 1(1):26–37

    Article  Google Scholar 

  55. Zada S, Ahmad A, Khan S et al (2018) Biogenic synthesis of silver nanoparticles using extracts of Leptolyngbya JSC-1 that induce apoptosis in HeLa cell line and exterminate pathogenic bacteria. Artificial cells Nanomed Biotechnol 46:471–480. https://doi.org/10.1080/21691401.2018.1499663

    Article  CAS  Google Scholar 

  56. Nimse SB, Pal D (2015) Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv 5(35):27986–28006

    Article  CAS  Google Scholar 

  57. Torres SK, Campos VL, Leo´n CG et al (2014) Biosynthesis of selenium nanoparticles by Pantoea agglomerans and their antioxidant activity. J Nanopart Res 14:1236

    Article  Google Scholar 

  58. Forootanfar H, Adeli-Sardou M, Nikkhoo M et al (2014) Antioxidant and cytotoxic effect of biologically synthesized selenium nanoparticles in comparison to selenium dioxide. J Trace Elem Med Biol 28(1):75–79. https://doi.org/10.1016/j.jtemb.2013.07.005

    Article  CAS  PubMed  Google Scholar 

  59. Ramya S, Shanmugasundaram T, Balagurunathan R (2015) Biomedical potential of actinobacterially synthesized selenium nanoparticles with special reference to anti-biofilm, anti-oxidant, wound healing, cytotoxic and anti-viral activities. J Trace Elem Med Biol 32:30–39. https://doi.org/10.1016/j.jtemb.2015.05.005

    Article  CAS  PubMed  Google Scholar 

  60. Shakibaie M, Forootanfar H, Golkari Y et al (2015) Anti-biofilm activity of biogenic selenium nanoparticles and selenium dioxide against clinical isolates of Staphylococcus aureus, Pseudomonas aeruginosa, and Proteus mirabilis. J Trace Elem Med Biol 29:235–241. https://doi.org/10.1016/j.jtemb.2014.07.020

    Article  CAS  PubMed  Google Scholar 

  61. Guan YH, Ying Z, Qiang Z et al (2010) Vacuolization and apoptosis induced by nano-selenium in HeLa cell line. Sci Chin Chem 53:2272–2278

    Article  Google Scholar 

  62. Sabouri Z, Akbari A, Hosseini HA, Darroudi M (2018) Facile green synthesis of NiO nanoparticles and investigation of dye degradation and cytotoxicity effects. J Mol Struc 1173:931–936. https://doi.org/10.1016/j.molstruc.2018.07.063

    Article  CAS  Google Scholar 

  63. Liu W, Li X, Wong Y et al (2012) Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano 6(8):6578–6591. https://doi.org/10.1021/nn202452c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to late Prof. O. N. Shrivastava (Department of Physics, Banaras Hindu University) for SEM-EDX and TEM analysis and Prof. Gopal Nath (Department of Microbiology, IMS, BHU) for providing pathogenic bacterial strains. Nikee Awasthee is grateful to ICMR, New Delhi for financial support as Research Associate-I (vide ref. no. 5/3/8/40/ITR-F/2019-ITR). We are also thankful to Dr. Krishna Kumar Rai for his generous help in statistical analyses and graphical presentation of the data.

Funding

The whole work related to anti-proliferative activity was supported by Indian Council of Medical Research, Govt. of India (5/13/51/2020/NCD-III). L. C. Rai is thankful to ICAR-NBAIM and NASI for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Prof. SKD conceived and designed the experiments. Prof. LCR, Distinguished Professor, CAS in Botany provided valuable suggestions besides his support at the laboratory level. All the experiments were performed by SP except anticancer activity which was performed by NA and AS. NA and SP generated and analyzed the data prior to preparation of the draft manuscript. Prof. SKD and Dr. SCG supervised the work, thoroughly edited and approved the final manuscript.

Corresponding author

Correspondence to Santosh Kumar Dubey.

Ethics declarations

Conflict of interest

No conflict, informed consent, or human or animal rights are applicable to this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Awasthee, N., Shekher, A. et al. Biogenic synthesis and characterization of selenium nanoparticles and their applications with special reference to antibacterial, antioxidant, anticancer and photocatalytic activity. Bioprocess Biosyst Eng 44, 2679–2696 (2021). https://doi.org/10.1007/s00449-021-02637-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02637-0

Keywords

Navigation