Skip to main content
Log in

Continuous production of monoacylglycerol via glycerolysis of babassu oil by immobilized Burkholderia cepacia lipase in a packed bed reactor

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study investigated the glycerolysis of babassu oil by Burkholderia cepacia lipase immobilized on SiO2–PVA particles in a continuous packed bed reactor. Experiments were conducted in a solvent-free system at 273.15 K either in an inert atmosphere or in the presence of cocoa butter to prevent lipid oxidation. The reactor (15 × 55 mm) was run at a fixed space time of 9.8 h using different molar ratios of babassu oil to glycerol (1:3, 1:6, 1:9, 1:12, and 1:15) to assess the effects of reactant molar ratio on monoacylglycerol productivity and selectivity. Nitrogen atmosphere and cocoa butter were equally effective in inhibiting lipid oxidation, indicating that addition of cocoa butter to glycerolysis reactions may be an interesting cost-reduction strategy. An oil/glycerol molar ratio of 1:9 resulted in the highest productivity (52.3 ± 2.9 mg g−1 h−1) and selectivity (31.5 ± 1.8%). Residence time distribution data were fitted to an axial dispersion model for closed-vessel boundary conditions, giving a mass transfer coefficient (kc) of 3.4229 × 10−6 m s−1. A kinetic model based on elementary steps of the studied reaction was written in Scilab and compared with experimental data, providing standard deviations in the range of 5.5–7.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Palacios D, Ortega N, Rubio-Rodríguez N, Busto MD (2019) Lipase-catalyzed glycerolysis of anchovy oil in a solvent-free system: simultaneous optimization of monoacylglycerol synthesis and end-product oxidative stability. Food Chem 271:372–379

    Article  CAS  PubMed  Google Scholar 

  2. Choi JM, Han SS, Kim HS (2015) Industrial applications of enzyme biocatalysis: current status and future aspects. Biotechnol Adv 33(7):1443–1454

    Article  CAS  PubMed  Google Scholar 

  3. Palomo JM, Filice M (2015) New emerging bio-catalysts design in biotransformations. Biotechnol Adv 33(5):605–613

    Article  CAS  PubMed  Google Scholar 

  4. Sánchez DA, Tonetto GM, Ferreira ML (2018) Burkholderia cepacia lipase: a versatile catalyst in synthesis reactions. Biotechnol Bioeng 115(1):6–24

    Article  PubMed  CAS  Google Scholar 

  5. Barriuso J, Vaquero ME, Prieto A, Martínez MJ (2016) Structural traits and catalytic versatility of the lipases from the Candida rugosa-like family: a review. Biotechnol Adv 34(5):874–885

    Article  CAS  PubMed  Google Scholar 

  6. Anobom CD, Pinheiro AS, De-Andrade RA, Aguieiras EC, Andrade GC, Moura MV, Freire DM (2014) From structure to catalysis: recent developments in the biotechnological applications of lipases. Biomed Res Int . https://doi.org/10.1155/2014/684506

    Article  PubMed  PubMed Central  Google Scholar 

  7. Birolli WG, Ferreira IM, Alvarenga N, Santos DDA, de Matos IL, Comasseto JV, Porto AL (2015) Biocatalysis and biotransformation in Brazil: an overview. Biotechnol Adv 33(5):481–510

    Article  CAS  PubMed  Google Scholar 

  8. Daiha KDG, Angeli R, de Oliveira SD, Almeida RV (2015) Are lipases still important biocatalysts? A study of scientific publications and patents for technological forecasting. PLoS ONE 10(6):e0131624

    Article  PubMed Central  CAS  Google Scholar 

  9. Boas RNV, Ceron AA, Bento HB, de Castro HF (2018) Application of an immobilized Rhizopus oryzae lipase to batch and continuous ester synthesis with a mixture of a lauric acid and fusel oil. Biomass Bioenerg 119:61–68

    Article  CAS  Google Scholar 

  10. Teixeira LF, Bôas RV, Oliveira PC, de Castro HF (2014) Effect of natural antioxidants on the lipase activity in the course of batch and continuous glycerolysis of babassu oil. Bioprocess Biosyst Eng 37(9):1717–1725

    CAS  PubMed  Google Scholar 

  11. Solaesa ÁG, Sanz MT, Falkeborg M, Beltrán S, Guo Z (2016) Production and concentration of monoacylglycerols rich in omega-3 polyunsaturated fatty acids by enzymatic glycerolysis and molecular distillation. Food Chem 190:960–967

    Article  CAS  PubMed  Google Scholar 

  12. Christopher LP, Kumar H, Zambare VP (2014) Enzymatic biodiesel: challenges and opportunities. Appl Energy 119:497–520

    Article  CAS  Google Scholar 

  13. Xia Q, Akanbi TO, Li R, Wang B, Yang W, Barrow CJ (2019) Lipase-catalysed synthesis of palm oil-omega-3 structured lipids. Food Funct 10(6):3142–3149

    Article  CAS  PubMed  Google Scholar 

  14. Singh AK, Mukhopadhyay M (2016) Enzymatic synthesis of mono-and diglyceride using lipase from candida rugosa immobilized onto cellulose acetate-coated Fe2O3 nanoparticles. Arab J Sci Eng 41(7):2553–2561

    Article  CAS  Google Scholar 

  15. He Y, Li J, Kodali S, Chen B, Guo Z (2016) The near-ideal catalytic property of Candida antarctica lipase A to highly concentrate n-3 polyunsaturated fatty acids in monoacylglycerols via one-step ethanolysis of triacylglycerols. Bioresour Technol 219:466–478

    Article  CAS  PubMed  Google Scholar 

  16. Rarokar NR, Menghani S, Kerzare D, Khedekar PB (2017) Progress in synthesis of monoglycerides for use in food and pharmaceuticals. J Exp Food Chem 3:1–6

    Article  Google Scholar 

  17. Liu W, Yang S, Gang H, Mu B, Liu J (2019) Efficient emulsifying properties of monoglycerides synthesized via simple and green route. J Dispers Sci Technol 41:1–9

    CAS  Google Scholar 

  18. Hu DJ, Chen JM, Xia YM (2013) A comparative study on production of middle chain diacylglycerol through enzymatic esterification and glycerolysis. J Ind Eng Chem 19(5):1457–1463

    Article  CAS  Google Scholar 

  19. De Freitas L, Dos Santos JC, Zanin GM, De Castro HF (2010) Packed-bed reactor running on babassu oil and glycerol to produce monoglycerides by enzymatic route using immobilized Burkholderia cepacia lipase. Appl Biochem Biotechnol 161(1):372–381

    Article  PubMed  CAS  Google Scholar 

  20. Zeng FK, Yang B, Wang YH, Wang WF, Ning ZX, Li L (2010) Enzymatic production of monoacylglycerols with camellia oil by the glycerolysis reaction. J Am Oil Chem Soc 87(5):531–537

    Article  CAS  Google Scholar 

  21. Kirana S, Arshada Z, Nosheenb S, Kamala S, Gulzara T, Majeeda MS, Rafiquec MA (2016) Microbial lipases: production and applications: a review. J Biochem Biotechnol Biomater 1(2):7–20

    Google Scholar 

  22. Aguedo M, Giet JM, Hanon E, Lognay G, Wathelet B, Destain J, Brasseur R, Vandenbol M, Danthine S, Blecker C, Wathelet JP (2009) Calorimetric study of milk fat/rapeseed oil blends and their interesterification products. Eur J Lipid Sci Tech 111(4):376–385

    Article  CAS  Google Scholar 

  23. Saeed R, Naz S (2019) Effect of heating on the oxidative stability of corn oil and soybean oil. Grasas Aceites 70(2):303

    Article  CAS  Google Scholar 

  24. Ramiro-Puig E, Castell M (2009) Cocoa: antioxidant and immunomodulator. Br J Nutr 101(7):931–940

    Article  CAS  PubMed  Google Scholar 

  25. Choong TSY, Yeoh CM, Phuah ET, Siew WL, Lee YY, Tang TK, Abdullah LC (2018) Kinetic study of lipase-catalyzed glycerolysis of palm olein using lipozyme TLIM in solvent-free system. PLoS ONE 13:e0192375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Voll F, Kruger RL, De Castilhos F, Filho LC, Cabral V, Ninow J, Corazza ML (2011) Kinetic modeling of lipase-catalyzed glycerolysis of olive oil. Biochem Eng J 56:107–115

    Article  CAS  Google Scholar 

  27. Moquin PHL, Temelli F, King JW, Palcic MM (2005) Kinetic modeling of the glycerolysis reaction for soybean oils in supercritical carbon dioxide media. J Am Oil Chem Soc 82:613–617

    Article  CAS  Google Scholar 

  28. Valério A, Krüger RL, Ninow J, Corazza FC, De Oliveira D, Vladimir Oliveira J, Corazza ML (2009) Kinetics of solvent-free lipase-catalyzed glycerolysis of olive oil in surfactant system. J Agric Food Chem 57:8350–8356

    Article  PubMed  CAS  Google Scholar 

  29. Suarez PA, Santos AL, Rodrigues JP, Alves MB (2009) Biocombustíveis a partir de óleos e gorduras: desafios tecnológicos para viabilizá-los. Quím Nova 32(3):768–775

    Article  CAS  Google Scholar 

  30. Freitas L, Da Ros PC, Santos JC, De Castro HF (2009) An integrated approach to produce biodiesel and monoglycerides by enzymatic interestification of babassu oil (Orbinya sp.). Process Biochem 44(10):1068–1074

    Article  CAS  Google Scholar 

  31. Da Rós PC, Silva GA, Mendes AA, Santos JC, De Castro HF (2010) Evaluation of the catalytic properties of Burkholderia cepacia lipase immobilized on non-commercial matrices to be used in biodiesel synthesis from different feedstocks. Bioresour Technol 101(14):5508–5516

    Article  PubMed  CAS  Google Scholar 

  32. Cheirsilp B, Kaewthong W, Aran H (2007) Kinetic study of glycerolysis of palm olein for monoacylglycerol production by immobilized lipase. Biochem Eng J 35(1):71–80

    Article  CAS  Google Scholar 

  33. Noureddini H, Harkey DW, Gutsman MR (2004) A continuous process for the glycerolysis of soybean oil. J Am Oil Chem Soc 81:203–207

    Article  CAS  Google Scholar 

  34. Martin LS, Ceron A, Oliveira PC, Zanin GM, De Castro HF (2018) Different organic components on silica hybrid matrices modulate the lipase inhibition by the glycerol formed in continuous transesterification reactions. J Ind Eng Chem 62:462–470

    Article  CAS  Google Scholar 

  35. Levenspiel O (2000) Engenharia das reações químicas, São Paulo: Edgard Blucher. Cap 5:74–98

    Google Scholar 

  36. AOCS (2004) Official methods and recommended practices of the American Oil Chemists’ Society. AOCS, Champaign

  37. Fogler HS (2016) Elementos de Engenharia das Reações Químicas, 5th edn. LTC, Rio de Janeiro

    Google Scholar 

  38. Al-Muftah AE, Abu-Reesh IM (2005) Effects of simultaneous internal and external mass transfer and product inhibition on immobilized enzyme-catalyzed reactor. Biochem Eng J 27:167–178

    Article  CAS  Google Scholar 

  39. Wilke CR, Chang P (1955) Correlation of diffusion coefficients in dilute solutions. AIChe J 1(2):264–270

    Article  CAS  Google Scholar 

  40. Treybal RE (1980) Mass-transfer operations. McGraw-Hill, New York, p 784

    Google Scholar 

  41. Santana JL, Oliveira JMD, Carvalho NB, Osório NMFDM, Mattedi S, Freitas LDS, Soares CMF (2018) Analysis of the performance of a packed bed reactor to production ethyl esters from crude vegetable oil using lipase immobilized in silica modified with protic ionic liquid. Quím Nova 41(8):891–898

    CAS  Google Scholar 

  42. Seguin D, Montillet A, Brunjail D, Comiti J (1996) Liquid–solid mass transfer in packed beds of variously shaped particles at low Reynolds numbers: experiments and model. Chem Eng J Biochem Eng J 63(1):1–9

    Article  CAS  Google Scholar 

  43. Fogler HS (2016) Elements of chemical reaction engineering, 5th edn, New Jersey, USA

  44. Stauch B, Fisher SJ, Cianci M (2015) Open and closed states of Candida antarctica lipase B: protonation and the mechanism of interfacial activation. J Lipid Res 56(12):2348–2358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kruger RL, Sychoski M, Balen M, Ninow JL, Corazza ML (2011) Estudo da glicerólise enzimática na produção de mono e diacilgliceróis utilizando óleo de oliva. Rev Ciênc Exatas Nat 13(3):331–351

    Google Scholar 

  46. Choong TSY, Yeoh CM, Phuah ET, Siew WL, Lee YY, Tang TK, Chuah Abdullah L (2018) Kinetic study of lipase-catalyzed glycerolysis of palm olein using Lipozyme TLIM in solvent-free system. PLoS ONE 13(2):e0192375

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Van Der Laan ET (1958) Chem Eng Sci 7:187

    Article  Google Scholar 

  48. Simões A, Ramos L, Freitas L, Santos JC, Zanin GM, De Castro HF (2015) Performance of an enzymatic packed bed reactor running on babassu oil to yield fatty ethyl esters (FAEE) in a solvent-free system. Biofuel Res J 2(2):242

    Article  Google Scholar 

  49. Gorfferjé G, Stäbler A, Herfellner T, Schweiggert-Weisz U, Flöter E (2014) Kinetics of enzymatic esterification of glycerol and free fatty acids in crude Jatropha oil by immobilized lipase from Rhizomucor miehei. J Mol Catal B Enzym 107:1–7

    Article  CAS  Google Scholar 

  50. Cristancho DM, Delgado DR, Martínez F, Abolghassemi Fakhree MA, Jouyban A (2011) Volumetric properties of glycerol + water mixtures at several temperatures and correlation with the Jouyban-Acree model. Rev Colomb Cienc Quim Farm 40(1):92–115

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the São Paulo State Research Foundation (FAPESP, grant nos. 2016/17833-3 and 2016/10636-8), the Brazilian National Council for Scientific and Technological Development (CNPq, process no. 433248/2018-1), and the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES, Finance Code 001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata N. Vilas Bôas.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vilas Bôas, R.N., Lima, R., Silva, M.V.C. et al. Continuous production of monoacylglycerol via glycerolysis of babassu oil by immobilized Burkholderia cepacia lipase in a packed bed reactor. Bioprocess Biosyst Eng 44, 2205–2215 (2021). https://doi.org/10.1007/s00449-021-02596-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-021-02596-6

Keywords

Navigation