Skip to main content
Log in

Improving the biocatalytic performance of co-immobilized cells harboring nitrilase via addition of silica and calcium carbonate

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

To improve nicotinic acid (NA) yield and meet industrial application requirements of sodium alginate-polyvinyl alcohol (SA-PVA) immobilized cells of Pseudomonas putida mut-D3 harboring nitrilase, inorganic materials were added to the SA-PVA immobilized cells to improve mechanical strength and mass transfer performance. The concentrations of inorganic materials were optimized to be 2.0% silica and 0.6% CaCO3. The optimal pH and temperature for SA-PVA immobilized cells and composite immobilized cells were both 8.0 and 45 °C, respectively. The half-lives of composite immobilized cells were 271.48, 150.92, 92.92 and 33.12 h, which were 1.40-, 1.35-, 1.22- and 1.63-fold compared to SA-PVA immobilized cells, respectively. The storage stability of the composite immobilized cells was slightly increased. The composite immobilized cells could convert 14 batches of 3-cyanopyridine with feeding concentration of 250 mM and accumulate 418 g ·L−1 nicotinic acid, while the SA-PVA immobilized cells accumulated 346 g L−1 nicotinic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11:18

    Article  Google Scholar 

  2. Brenner C (2002) Catalysis in the nitrilase superfamily. Curr Opin Struct Biol 12(6):775–782

    Article  CAS  Google Scholar 

  3. Zhang XH, Wang CY, Cai X, Xue YP, Liu ZQ, Zheng YG (2020) Upscale production of (R)-mandelic acid with a stereospecific nitrilase in an aqueous system. Bioprocess Biosyst Eng 43:1299–1307

    Article  CAS  Google Scholar 

  4. Chuck R (2000) A catalytic green process for the production of niacin. Chimia 54(9):508–513

    CAS  Google Scholar 

  5. Chuck R (2005) Technology development in nicotinate production. Appl Catal A Gen 280(1):75–82

    Article  CAS  Google Scholar 

  6. Fleming FF (1999) Nitrile-containing natural products. Nat Prod Rep 16(5):597–606

    Article  CAS  Google Scholar 

  7. Kumar G, Mudhoo A, Sivagurunathan P, Nagarajan D, Ghimire A, Lay CH, Lin CY, Lee DJ, Chang JS (2016) Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresour Technol 219:725–737

    Article  CAS  Google Scholar 

  8. Karel SF, Libicki SB, Robertson CR (1985) The immobilization of whole cells: engineering principles. Chem Eng Sci 40(8):1321–1354

    Article  CAS  Google Scholar 

  9. Graham D, Pereira R, Barfield D, Cowan D (2000) Nitrile biotransformations using free and immobilized cells of a thermophilic Bacillus spp. Enzyme Microb Technol 26(5–6):368–373

    Article  CAS  Google Scholar 

  10. Nigam VK, Khandelwal AK, Gothwal RK, Mohan MK, Choudhury B, Vidyarthi AS, Ghosh P (2009) Nitrilase-catalysed conversion of acrylonitrile by free and immobilized cells of Streptomyces sp. J Biosci 34(1):21–26

    Article  CAS  Google Scholar 

  11. Martinkova L, Kren V (2010) Biotransformations with nitrilases. Curr Opin Chem Biol 14(2):130–137

    Article  CAS  Google Scholar 

  12. Fan HY, Chen LF, Sun HH, Wang HL, Ren YH, Wei DZ (2017) A novel nitrilase from Ralstonia eutropha H16 and its application to nicotinic acid production. Bioprocess Biosyst Eng 40(8):1271–1281

    Article  CAS  Google Scholar 

  13. Pai O, Banoth L, Ghosh S, Chisti Y, Banerjee UC (2014) Biotransformation of 3-cyanopyridine to nicotinic acid by free and immobilized cells of recombinant Escherichia coli. Process Biochem 49(4):655–659

    Article  CAS  Google Scholar 

  14. Wu SJ, Fogiel AJ, Petrillo KL, Jackson RE, Parker KN, DiCosimo R, Ben-Bassat A, O’Keefe DP, Payne MS (2008) Protein engineering of nitrilase for chemoenzymatic production of glycolic acid. Biotechnol Bioeng 99(3):717–720

    Article  CAS  Google Scholar 

  15. Kabaivanova LV, Chernev GE, Salvado IMM, Fernandes MHV (2011) Silica-carrageenan hybrids used for cell immobilization realizing high-temperature degradation of nitrile substrates. Cent Eur J Chem 9(2):232–239

    CAS  Google Scholar 

  16. Dong TT, Gong JS, Gu BC, Zhang Q, Li H, Lu ZM, Lu ML, Shi JS, Xu ZH (2017) Significantly enhanced substrate tolerance of Pseudomonas putida nitrilase via atmospheric and room temperature plasma and cell immobilization. Bioresour Technol 244:1104–1110

    Article  CAS  Google Scholar 

  17. Gong JS, Lu ZM, Shi JS, Dou WF, Xu HY, Zhou ZM, Xu ZH (2011) Isolation, identification, and culture optimization of a novel glycinonitrile-hydrolyzing fungus-Fusarium oxysporum H3. Appl Biochem Biotechnol 165(3–4):963–977

    Article  CAS  Google Scholar 

  18. Leong YW, Ishak ZAM, Ariffin A (2004) Mechanical and thermal properties of talc and calcium carbonate filled polypropylene hybrid composites. J Appl Polym Sci 91(5):3327–3336

    Article  CAS  Google Scholar 

  19. Chotani GK, Constantinides A (1984) Immobilized cell cross-flow reactor. Biotechnol Bioeng 26(3):217–220

    Article  CAS  Google Scholar 

  20. Michelini E, Roda A (2012) Staying alive: new perspectives on cell immobilization for biosensing purposes. Anal Bioanal Chem 402(5):1785–1797

    Article  CAS  Google Scholar 

  21. Wang HQ, Hua F, Zhao YC, Li Y, Wang X (2014) Immobilization of Pseudomonas sp. DG17 onto sodium alginate–attapulgite–calcium carbonate. Biotechnol Biotechnol Equip 28(5):834–842

    Article  Google Scholar 

  22. Liu S, Li H (2005) Mechanical strength improvement of immobilized microbial cell granule. J Mirobiol 25(4):32–34

    Google Scholar 

  23. Zhang XH, Liu ZQ, Xue YP, Wang YS, Yang B, Zheng YG (2018) Production of R-mandelic acid using nitrilase from recombinant E. coli cells immobilized with tris(hydroxymethyl)phosphine. Appl Biochem Biotechnol 184(3):1024–1035

    Article  CAS  Google Scholar 

  24. Jin LQ, Guo DJ, Li ZT, Liu ZQ, Zheng YG (2016) Immobilization of nitrilase on bioinspired silica for efficient synthesis of 2-hydroxy-4-(methylthio) butanoic acid from 2-hydroxy-4-(methylthio) butanenitrile. J Ind Microbiol Biot 43(5):585–593

    Article  CAS  Google Scholar 

  25. Jamwal S, Dautoo UK, Ranote S, Dharela R, Chauhan GS (2019) Enhanced catalytic activity of new acryloyl crosslinked cellulose dialdehyde-nitrilase Schiff base and its reduced form for nitrile hydrolysis. Int J Biol Macromol 131:117–126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R & D Program of China (no. 2019YFA0905300), the Western Talents of Shandong Province (no. 2017GRC5217), the National First-class discipline Program of Light Industry Technology and Engineering (no. LITE2018-18), and the Fundamental Research Funds for the Central Universities (no. JUSRP22047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin-Song Gong or Jin-Song Shi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SZ., Wang, ZK., Gong, JS. et al. Improving the biocatalytic performance of co-immobilized cells harboring nitrilase via addition of silica and calcium carbonate. Bioprocess Biosyst Eng 43, 2201–2207 (2020). https://doi.org/10.1007/s00449-020-02405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02405-6

Keywords

Navigation