Skip to main content

Advertisement

Log in

Modification of carbon felt anode with graphene/Fe2O3 composite for enhancing the performance of microbial fuel cell

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

A Correction to this article was published on 09 December 2019

This article has been updated

Abstract

In this paper, a graphene/Fe2O3 (G/Fe2O3) modified anode was prepared through a simple one-step hydrothermal reduction method to improve the performance of microbial fuel cell (MFC). The power density of MFC with the G/Fe2O3 anode was 334 ± 4 mW/m2, which was 1.72 times and 2.59 times that of MFC with a graphene anode and an unmodified anode, respectively. Scanning electron microscopy and iron reduction rate experiment showed that G/Fe2O3 materials had good biocompatibility. Furthermore, microbial community analysis results indicated that the predominant populations on the anode biofilm belonged to Enterobacteriaceae, and the abundance of Desulfovibrio increased in the presence of the Fe2O3. Thus, the combination of graphene and Fe2O3 provided high electrical conductivity to facilitate extracellular electron transfer (EET) and improved biocompatibility to promote the cable bacteria formation and enhance electron transport efficiency over long distances. Therefore, G/Fe2O3 is an effective anode material for enhancing the performance of MFCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 09 December 2019

    It has been brought to our attention that in our article, explanations about cable bacteria are not rigorous. We apologize for these and note the specific reporting issues and errors below, with their corrections.

References

  1. Kakarla R, Min B (2014) Photoautotrophic microalgae scenedesmus obliquus attached on a cathode as oxygen producers for microbial fuel cell (MFC) operation. Int J Hydrog Energy 39:10275–10283

    CAS  Google Scholar 

  2. Logan BE (2009) Exoelectrogenic bacteria that power microbial fuel cells. Nat Rev Microbiol 7:375–381

    PubMed  CAS  Google Scholar 

  3. Wang HY, Wang GM, Ling YC, Qian F, Song Y, Lu XH, Chen SW, Tong YX, Li Y (2013) High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode. RSC 5:10283–10290

    CAS  Google Scholar 

  4. Juang DF, Yang PC, Chou HY, Chiu LJ (2011) Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells. Biotechnol Lett 33:2147–2160

    PubMed  CAS  Google Scholar 

  5. Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aeltermann P, Varstraete W, Rabaey K (2006) Microbial Fuel Cells: Methodology and Technology. Environ Sci Technol 40:5181–5192

    PubMed  CAS  Google Scholar 

  6. Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518

    CAS  Google Scholar 

  7. Santoro C, Guilizzoni M, Baena JP, Pasaogullari U, Casalegno A, Li B, Babanova S, Artyushkova K, Atanassov P (2014) The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 67:128–139

    CAS  Google Scholar 

  8. Yu YY, Yong YC, Guo CX, Song H, Li CM (2014) Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere 140:26–33

    PubMed  Google Scholar 

  9. Reshetenko TV, Kim HT, Krewer U, Kweon HJ (2007) The effect of the anode loading and method of MEA fabrication on DMFC performance. Fuel Cells 7:238–245

    CAS  Google Scholar 

  10. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen SBT, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    PubMed  CAS  Google Scholar 

  11. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol 3:101–105

    PubMed  CAS  Google Scholar 

  12. Xiao L, Damien J, Luo JY, Jang HD, Huang JX, He Z (2012) Crumpled graphene particles for microbial fuel cell electrodes. J Power Sour 208:187–192

    CAS  Google Scholar 

  13. Wang Y, Zhao C, Sun D, Zhang JR, Zhu JJ (2013) Graphene/poly (3,4-ethylenedioxy-thiophene) hybrid as an anode for high-performance microbial fuel cells. ChemPlusChem 78:823–829

    PubMed  CAS  Google Scholar 

  14. Kerisit S, Rosso KM, Dupuis M, Valiev M (2007) Molecular computational investigation of electron-transfer kinetics across cytochrome-Iron oxide interfaces. J Phys Chem C 111:11363–11375

    CAS  Google Scholar 

  15. Lower BH, Shi L, Yongsunthon R, Droubay TC, McCready DE, Lower SK (2007) Specific bonds between an iron oxide surface and outer membrane cytochromes MtrC and OmcA from Shewanella oneidensis MR-1. J Bacteriol 189:4944–4952

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Wu D, Xing D, Lu L, Wei M, Liu B, Ren N (2013) Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs. Bioresour Technol 135:630–634

    PubMed  CAS  Google Scholar 

  17. Beliaev AS, Saffarini DA, Mc Laughlin JL, Hunnicutt D (2001) MtrC, an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-1. Mol Microbiol 39:722–730

    PubMed  CAS  Google Scholar 

  18. Xiong Y, Shi L, Chen B, Mayer MU, Lower BH, Londer Y (2006) High-affinity binding and direct electron transfer to solid metals by the Shewanella oneidensis MR-1 Outer membrane c-type cytochrome OmcA. J Am Chem Soc 128:13978–13979

    PubMed  CAS  Google Scholar 

  19. Jin YC, Qian J, Wang K, Yang XW, Dong XY, Qiu BJ (2013) Fabrication of multifunctional magnetic FePc@Fe3O4/reduced graphene oxide nanocomposites as biomimetic catalysts for organic peroxide sensing. J Electroanal Chem 693:79–85

    CAS  Google Scholar 

  20. Song TS, Cai HY, Yan ZS, Zhao ZW, Jiang HL (2012) Various voltage productions by microbial fuel cells with sedimentary inocula taken from different sites in one freshwater lake. Bioresour Technol 108:68–75

    PubMed  CAS  Google Scholar 

  21. Tamura H, Goto K, Yotsuyanagi T, Nagayama M (1974) Spectrophotometric determination of iron (II) with 1,10-phenanthroline in the presence of large amounts of iron (III). Talanta 21:314–318

    PubMed  CAS  Google Scholar 

  22. Song TS, Yan ZS, Zhao ZW, Jiang HL (2010) Removal of organic matter in freshwater sediment by microbial fuel cells at various external resistances. J Chem Technol Biotechnol 85:1489–1493

    CAS  Google Scholar 

  23. Moon IK, Lee J, Ruoff RS, Lee H (2010) Reduced graphene oxide by chemical graphitization. Nat Commun 1:73

    PubMed  Google Scholar 

  24. Ferrar AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Soild State Commun 143:47–57

    Google Scholar 

  25. Li S, Hu YY, Xu Q, Sun Z, Hou B, Zhang YP (2012) Iron and nitrogen-functionalized graphene as a non-precious metal catalyst for enhanced oxygen reduction in an air-cathode microbial fuel cell. J Power Sour 213:265–269

    CAS  Google Scholar 

  26. Song TS, Tan WM, Xie JJ (2018) Bio-reduction of graphene oxide using sulfate-reducing bacteria and its implication on anti-biocorrosion. J Nanosci Nanotechno 18:1–7

    CAS  Google Scholar 

  27. Greene AC, Patel BKC, Sheehy AJ (1997) Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509

    PubMed  CAS  Google Scholar 

  28. Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of converting glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535

    PubMed  CAS  Google Scholar 

  29. Yoshida N, Miyata Y, Mugita A, Iida K (2016) Electricity recovery from municipal sewage wastewater using a hydrogel complex composed of microbially reduced graphene oxide and sludge. Materials (Basel) 9:742

    Google Scholar 

  30. Leenaerts O, Partoens B, Peeters FM (2009) Water on graphene: Hydrophobicity and dipole moment using density functional theory. Phys Rev B 79:235440

    Google Scholar 

  31. Logan BE, Regan JM (2006) Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518

    PubMed  CAS  Google Scholar 

  32. Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 4:497–508

    PubMed  CAS  Google Scholar 

  33. Franz CMAP, Van Belkum MJ, Holzapfel WH, Abriouel H, Gálvez A (2007) Diversity of enterococcal bacteriocins and their grouping in a new classification scheme. FEMS Microbiol Rev 31:293–310

    PubMed  CAS  Google Scholar 

  34. Ganesan A, Chaussonnerie S, Tarrade A, Dauga C, Bouchez T, Pelletier E, Le Paslier D, Sghir A (2008) Cloacibacillus evryensis gen. nov., sp. nov., a novel asaccharolytic, mesophilic, amino-acid-degrading bacterium within the phylum “Synergistetes”, isolated from an anaerobic sludge digester. Int J Syst Evol Microbiol 59:2003–2012

    Google Scholar 

  35. Holmes DE, Bond DR, O’Neil RA, Reimers CE, Tender LR, Lovley DR (2004) Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb Ecol 48:178–190

    PubMed  CAS  Google Scholar 

  36. Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, Kjeldsen KU, Schreiber L, Gorby YA, El Naggar MY, Leung KM, Schramm A, Petersen N, Nielsen LP (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491:218–221

    PubMed  CAS  Google Scholar 

  37. Roden EE, Urrutia MM (2002) Influence of biogenic Fe (II) on bacterial crystalline Fe (III) oxide reduction. Geomicrobiol J 19:209–251

    CAS  Google Scholar 

  38. Hou J, Liu Z, Zhang P (2013) A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J Power Sour 224:139–144

    CAS  Google Scholar 

  39. Huang LH, Li XF, Ren YP, Wang XH (2016) In-situ modified carbon cloth with polyaniline/graphene as anode to enhance performance of microbial fuel cell. Int J Hydrog Energy 41:11369–11379

    CAS  Google Scholar 

  40. Benetton XD, Navarro-Ávila SG, Figueiras C (2010) Electrochemical evaluation of Ti/TiO2-polyaniline anodes for microbial fuel cells using hypersaline microbial consortia for synthetic wastewater treatment. J New Mater Electrochem Syst 13:1–6

    CAS  Google Scholar 

  41. Wen Z, Ci S, Mao S, Cui S, Lu G, Yu K (2013) TiO2 nanoparticles-decorated carbon nanotubes for significantly improved bioelectricity generation in microbial fuel cells. J Power Sour 234:100–106

    CAS  Google Scholar 

  42. Mehdinia A, Ziaei E, Jabbari A (2014) Facile microwave-assisted synthesized reduced graphene oxide/tin oxide nanocomposite and using as anode material of microbial fuel cell to improve power generation. Int J Hydrog Energy 39:10724–10730

    CAS  Google Scholar 

  43. Liu Q, Yang Y, Mei X, Liu B, Chen C, Xing D (2018) Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells. Sci Total Environ 631–632:695–701

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China (2018YFA0901300), the National Natural Science Foundation of China (Grant No.: 21878150); the Key projects of modern agriculture in Jiangsu Province (Grant No.: BE2018394); Fund from the State Key Laboratory of Materials-Oriented Chemical Engineering (ZK201605) and the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tian-shun Song or Jingjing Xie.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Wang, H., Huang, Q. et al. Modification of carbon felt anode with graphene/Fe2O3 composite for enhancing the performance of microbial fuel cell. Bioprocess Biosyst Eng 43, 373–381 (2020). https://doi.org/10.1007/s00449-019-02233-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-019-02233-3

Keywords

Navigation