Skip to main content
Log in

Enhancement of ε-poly-l-lysine production by overexpressing the ammonium transporter gene in Streptomyces albulus PD-1

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The antibacterial polymer ɛ-poly-l-lysine (ε-PL) has been widely used as a safe food preservative. As the synthesis of ε-PL requires a rich supply of nitrogen, the efficiency of nitrogen translocation and utilization is extremely important. The objective of this study was to improve the production of ε-PL by overexpressing the ammonium transporter gene amtB in Streptomyces albulus PD-1. Using the recombinant bacteria, the optimum carbon-to-nitrogen ratio in the synthesis stage of fermentation increased from 3 to 4.71, compared with that obtained using the wild-type strain, and the utilization efficiency of ammonium was improved too. Ultimately, the production of ε-PL increased from 22.7 to 35.7 g/L upon fed-batch cultivation in a 5 L bioreactor. Determination of the expression of the genes and enzymes associated with ammonium metabolism and ε-PL synthesis revealed that the overexpression of amtB in S. albulus PD-1 enhanced ε-PL biosynthesis by increasing the activity of the corresponding metabolic pathways. To the best of our knowledge, this is the first report on enhancing ε-PL production by overexpression of the amtB gene in an ε-PL-producing strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Xu Z, Xu Z, Feng X, Xu D, Liang J, Xu H (2016) Recent advances in the biotechnological production of microbial poly(ɛ-l-lysine) and understanding of its biosynthetic mechanism. Appl Microbiol Biotechnol 100:6619–6630

    Google Scholar 

  2. Hiraki J, Ichikawa T, Ninomiya S, Seki H, Uohama K, Seki H, Kimura S, Yanagimoto YBJ Jr (2003) Use of adme studies to confirm the safety of epsilon-polylysine as a preservative in food. Regul Toxicol Pharmacol 37:328–340

    Article  CAS  Google Scholar 

  3. Pandey AK, Kumar A (2014) Improved microbial biosynthesis strategies and multifarious applications of the natural biopolymer epsilon-poly-L-lysine. Process Biochem 49:496–505

    Article  CAS  Google Scholar 

  4. Hirohara H, Takehara M, Saimura M, Ikezaki A, Masayuki A, Miyamoto M (2006) Biosynthesis of poly(epsilon-l-lysine)s in two newly isolated strains of streptomyces sp. Appl Microbiol Biotechnol 73:321–331

    Google Scholar 

  5. Yoshida T, Nagasawa T (2003) Epsilon-poly-l-lysine: microbial production, biodegradation and application potential. Appl Microbiol Biotechnol 62:21–26

    Article  CAS  Google Scholar 

  6. Xu D, Yao H, Xu Z, Wang R, Xu Z, Li S, Feng X, Liu Y, Xu H (2017) Production of ɛ-poly-lysine by Streptomyces albulus PD-1 via solid-state fermentation. Bioresour Technol 223:149–156

    Article  CAS  Google Scholar 

  7. Cai L, Tabata H, Kawai T (2001) Probing electrical properties of oriented DNA by conducting atomic force microscopy. Nanotechnology 12:211–216

    Article  Google Scholar 

  8. Laurinavicius V, Kurtinaitiene B, Liauksminas V, Ramanavicius A, Meskys R, Rudomanskis R, Skotheim T, Boguslavsky L (1999) Oxygen insensitive glucose biosensor based on PQQ-dependent glucose dehydrogenase. Anal Lett 32:299–316

    Article  Google Scholar 

  9. Shih IL, Shen MH, Van YT (2006) Microbial synthesis of poly(ε-lysine) and its various applications. Bioresour Technol 97:1148–1159

    Article  CAS  Google Scholar 

  10. Wang R, Li J, Chen W, Xu T, Yun S, Xu Z, Xu Z, Sato T, Chi B, Xu H (2017) A biomimetic mussel-inspired ε-poly-l-lysine hydrogel with robust tissue-anchor and anti-infection capacity. Adv Funct Mater 27:1604894

    Article  CAS  Google Scholar 

  11. Evans HJ, Bottomley PJ, Newton WE (1985) Nitrogen fixation research progress. Springer, Netherlands

    Book  Google Scholar 

  12. Merrick MJ, Edwards RA (1996) Nitrogen control in bacteria. Microbiol Rev 59:604–622

    Google Scholar 

  13. Hodgson DA (2000) Primary metabolism and its control in streptomycetes: a most unusual group of bacteria. Adv Microb Physiol 42:47–238

    Google Scholar 

  14. Mart Xed JF (2004) Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. J Bacteriol 186:5197–201

    Article  CAS  Google Scholar 

  15. Shih IL, Shen MH (2006) Application of response surface methodology to optimize production of poly-ɛ-lysine by Streptomyces albulus IFO 14147. Enzym Microb Technol 39:15–21

    Article  CAS  Google Scholar 

  16. Chen X, Tang L, Li S, Liao L, Zhang J, Mao Z (2011) Optimization of medium for enhancement of ε-poly-l-lysine production by Streptomyces sp. M-Z18 with glycerol as carbon source. Bioresour Technol 102:1727–1732

    Google Scholar 

  17. Liu SR, Wu QP, Zhang JM, Mo SP (2015) Efficient production of ε-poly-l-lysine by Streptomyces ahygroscopicus using one-stage pH control fed-batch fermentation coupled with nutrient feeding. J Microbiol Biotechnol 25:358–365

    Google Scholar 

  18. Sanchez S, Demain AL (2002) Metabolic regulation of fermentation processes. Enzyme Microb Technol 31:895–906

    Article  CAS  Google Scholar 

  19. Ren XD, Chen XS, Tang L, Zeng X, Wang L, Mao ZG (2015) Physiological mechanism of the overproduction of ε-poly-l-lysine by acidic pH shock in fed-batch fermentation. Bioprocess Biosyst Eng 38:2085–2094

    Google Scholar 

  20. Reuther J, Wohlleben W (2007) Nitrogen metabolism in streptomyces coelicolor: transcriptional and post-translational regulation. J Mol Microbiol Biotechnol 12:139–146

    Article  CAS  Google Scholar 

  21. Detsch C, Stülke J (2003) Ammonium utilization in bacillus subtilis: transport and regulatory functions of nrgA and nrgB. Microbiology 149:3289–3297

    Article  CAS  Google Scholar 

  22. Ren XD, Chen XS, Zeng X, Wang L, Tang L, Mao ZG (2015) Acidic pH shock induced overproduction of ε-poly-l-lysine in fed-batch fermentation by Streptomyces sp.M-Z18 from agro-industrial by-products. Bioprocess Biosyst Eng 38:1113–1125

    Article  CAS  PubMed  Google Scholar 

  23. Sindelar G, Wendisch VF (2007) Improving lysine production by corynebacterium glutamicum through dna microarray-based identification of novel target genes. Appl Microbiol Biotechnol 76:677–689

    Article  CAS  Google Scholar 

  24. Meng S, Wu H, Wang L, Zhang B, Bai L (2017) Enhancement of antibiotic productions by engineered nitrate utilization in actinomycetes. Appl Microbiol Biotechnol 101:1–12

    Article  CAS  Google Scholar 

  25. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. The John Innes Foundation, Norwich

    Google Scholar 

  26. Lu Q (2005) Seamless cloning and gene fusion. Trends Biotechnol 23:199–207

    Article  CAS  Google Scholar 

  27. Xu Z, Cao C, Sun Z, Li S, Xu Z, Feng X, Xu H (2015) Construction of a genetic system for Streptomyces albulus PD-1 and improving poly(ε-l-lysine) production through expression of Vitreoscilla hemoglobin. J Microbiol Biotechnol 25:1819–1826

    Article  CAS  Google Scholar 

  28. Zhou YP, Ren XD, Wang L, Chen XS, Mao ZG, Tang L (2015) Enhancement of ε-poly-lysine production in ε-poly-lysine-tolerant Streptomyces sp. by genome shuffling. Bioprocess Biosyst Eng 38:1705–1713

    Google Scholar 

  29. Kahar P, Iwata T, Hiraki J, Park EY, Okabe M (2001) Enhancement of ε-polylysine production by streptomyces albulus strain 410 using pH control. J Biosci Bioeng 91:190–194

    Article  Google Scholar 

  30. Xia J, Xu Z, Xu H, Feng X, Bo F (2014) The regulatory effect of citric acid on the co-production of poly(ε-lysine) and poly(l-diaminopropionic acid) in streptomyces albulus PD-1. Bioprocess Biosyst Eng 37:2095–2103

    Article  CAS  PubMed  Google Scholar 

  31. Xu Z, Bo F, Xia J, Sun Z, Li S, Feng X, Xu H (2015) Effects of oxygen-vectors on the synthesis of epsilon-poly-lysine and the metabolic characterization of Streptomyces albulus PD-1. Biochem Eng J 94:58–64

    Article  CAS  Google Scholar 

  32. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  33. Wang G, Hosaka T, Ochi K (2008) Dramatic activation of antibiotic production in streptomyces coelicolor by cumulative drug resistance mutations. Appl Microbiol Biotechnol 74:2834–2840

    CAS  Google Scholar 

  34. Zhou TC, Kim BG, Zhong JJ (2014) Enhanced production of validamycin a in streptomyces hygroscopicus 5008 by engineering validamycin biosynthetic gene cluster. Appl Microbiol Biotechnol 98:7911–7922

    Google Scholar 

  35. Ertan H (1992) Some properties of glutamate dehydrogenase, glutamine synthetase and glutamate synthase from corynebacterium callunae. Arch Microbiol 158:35–41

    Article  CAS  PubMed  Google Scholar 

  36. Chen XS, Mao ZG (2013) Comparison of glucose and glycerol as carbon sources for ε-poly-L-lysine production by streptomyces sp. M-Z18. Appl Biochem Biotechnol 170:185–197

    Article  CAS  PubMed  Google Scholar 

  37. Gu Y, Wang X, Yang C, Geng W, Feng J, Wang Y, Wang S, Song C (2016) Effects of chromosomal integration of the vitreoscilla hemoglobin gene (vgb) and s-adenosylmethionine synthetase gene (metk) on ε-poly-L-lysine synthesis in streptomyces albulus NK660. Appl Biochem Biotechnol 178:1445–1457

    Article  CAS  PubMed  Google Scholar 

  38. Hamano Y, Nicchu I, Shimizu T, Onji Y, Hiraki J, Takagi H (2007) ɛ-poly-l-lysine producer, streptomyces albulus, has feedback-inhibition resistant aspartate kinase. Appl Microbiol Biotechnol 76:873–882

    Article  CAS  PubMed  Google Scholar 

  39. Wu H, Liu W, Dong D, Li J, Zhang D, Lu C (2014) Slnm gene overexpression with different promoters on natamycin production in streptomyces lydicus A02. J Ind Microbiol Biotechnol 41:163–172

    Article  CAS  PubMed  Google Scholar 

  40. Zheng ZY, Jiang Y, Zhan XB, Ma LW, Wu JR, Zhang LM, Lin CC (2014) An increase of curdlan productivity by integration of carbon/nitrogen sources control and sequencing dual fed-batch fermentors operation. Prikladnaia Biokhimiia I Mikrobiologiia 50:35–42

    CAS  Google Scholar 

  41. Xu N, Zhang X, Xiao F, Han L, Zeng C (2001) Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (eustigmatophyta). J Appl Phycol 13:463–469

    Article  CAS  Google Scholar 

  42. Yang J, Zhou X, Zhang Y (2004) Improvement of recombinant hirudin production by controlling NH4 +, concentration in pichia pastoris, fermentation. Biotechnol Lett 26:1013–1017

    Article  CAS  PubMed  Google Scholar 

  43. Cheng P, Wang Y, OseiWusu D, Wang Y, Liu T (2018) Development of nitrogen supply strategy for scenedesmus rubescens attached cultivation toward growth and lipid accumulation. Bioprocess Biosyst Eng 41:435–442

    Article  CAS  PubMed  Google Scholar 

  44. Xia J, Xu Z, Xu H, Liang J, Li S, Feng X (2014) Economical production of poly (ε-l-lysine) and poly (l-diaminopropionic acid) using cane molasses and hydrolysate of streptomyces cells by Streptomyces albulus PD-1. Bioresour Technol 164:241–247

    Article  CAS  PubMed  Google Scholar 

  45. Glibert PM, Wilkerson FP, Dugdale RC, Raven JA, Dupont CL, Leavitt PR, Parker AE, Burkholder JM, Kana TM (2016) Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol Oceanogr 61:284–300

    Article  CAS  Google Scholar 

  46. Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J (2008) The streptomyces coelicolor glnr regulon: identification of new glnr targets and evidence for a central role of glnr in nitrogen metabolism in actinomycetes. Mol Microbiol 67:861–880

    Article  CAS  PubMed  Google Scholar 

  47. Amon J, Titgemeyer F, Burkovski A (2010) Common patterns-unique features: nitrogen metabolism and regulation in gram-positive bacteria. Fems Microbiol Rev 34:588–605

    Article  CAS  PubMed  Google Scholar 

  48. Tesch M, Graaf AAD, Sahm H (1999) In vivo fluxes in the ammonium-assimilatory pathways in Corynebacterium glutamicum studied by 15N nuclear magnetic resonance. Appl Environ Microbiol 65:1099–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang B, Qin P, Xu Z, Zhu R, Meng Y (2011) Effects of cacl2, on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in bacillus subtilis, CGMCC 2108 producing poly-(γ-glutamic acid). Bioresour Technol 102:3595–3598

    Article  CAS  PubMed  Google Scholar 

  50. Takehara M, Hibino A, Saimura M, Hirohara H (2010) High-yield production of short chain length poly(ε-L-lysine) consisting of 5–20 residues by streptomyces aureofaciens, and its antimicrobial activity. Biotechnol Lett 32:1299–1303

    Article  CAS  PubMed  Google Scholar 

  51. Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2017YFD0400400), the National Nature Science Foundation of China (Nos. 21476112 and 51703095), the China Postdoctoral Science Foundation (No. 51229018), the State Key Laboratory of Materials-Oriented Chemical Engineering (No. KL15-09 to J. Zhou), and the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (No. 2015BAD15B04), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (No. XTB1804).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohai Feng or Hong Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, D., Yao, H., Cao, C. et al. Enhancement of ε-poly-l-lysine production by overexpressing the ammonium transporter gene in Streptomyces albulus PD-1. Bioprocess Biosyst Eng 41, 1337–1345 (2018). https://doi.org/10.1007/s00449-018-1961-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-018-1961-9

Keywords

Navigation