Skip to main content
Log in

Old landfill leachate treatment through multistage process: membrane adsorption bioreactor and nanofitration

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A bench-scale integrated process based on submerged aerobic powdered activated carbon-membrane bioreactor (PAC-MBR) has been utilized and established for the treatment of landfill leachate. The results showed that the submerged PAC-MBR system effectively removed biodegradable trace organic compounds by the average removal rate about 71 % at optimum food to microorganism (F/M) ratio of 0.4 gCOD/g day under a HRT of 24 h. Adding nanofiltration (NF) process increased the treatment efficiency up to 99 %. Further, adding powdered activated carbon to activated sludge (AS) resulted in a higher adsorption capacity in comparison with AS. Adsorption isotherms were investigated and fitted by the Langmuir and Freundlich isotherm models in which the Langmuir model performed better. The specific oxygen uptake rate (SOUR) showed that adding PAC reduces the effects of COD on microorganism activities. NH3–N, TKN and Heavy metals removal efficiency amounted to 97 ± 2, 96 ± 2, and 99 ± 2 %, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

PAC:

Powdered activated carbon

MBR:

Membrane bioreactor

F/M :

Food to microorganism

NF:

Nanofiltration

AS:

Activated sludge

SOUR:

Specific oxygen uptake rate

LFL:

Landfill leachate

PCPs:

Personal care products

BOD:

Biological oxygen demand

COD:

Chemical oxygen demand

SS:

Suspended solids

TKN:

Total Kjeldahl nitrogen

NH3–N:

Ammonium nitrogen

VFAs:

Volatile fatty acids

SBR:

Sequencing batch reactors

UASB:

Upflow anaerobic sludge blanket

CAS:

Conventional activated sludge

UF:

Ultrafiltration

PSf:

Polysulphone

DMF:

N,N-Dimethylformamide

MLVSS:

Mixed liquor volatile suspended solids

MLSS:

Mix liquor suspended solid

HRT:

Hydraulic retention time

SVI:

Volumetric index of sludge

R 2 :

Regression correlation coefficients

SRT:

Sludge retention time

q m :

Maximum adsorption capacity

q e :

Amount of COD adsorbed

C e :

Equilibrium concentration of the adsorbate

K l :

Energy of adsorption

K f :

Adsorption capacity

n :

Adsorption intensity

a :

Coefficient

q :

Adsorption capacity

x :

Function of the F/M ration

References

  1. Ahmed FN, Lan CQ (2012) Treatment of landfill leachate using membr ane bioreactors: a review. Desalination 287:41–54

    Article  CAS  Google Scholar 

  2. Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber JV (2006) Landfill leachate treatment methods: A review. J Environ Chem Lett 4:51–61

    Article  CAS  Google Scholar 

  3. Renou S, Givaudan JG, Poulain S, Dirassouyan F, Moulin P (2008) Landfill leachate treatment: review and opportunity. J Hazard Mater 150:468–493

    Article  CAS  Google Scholar 

  4. Baig S, Coulomb I, Courant P, Liechti P (1999) Treatment of landfill leachates: lapeyrouse and Satrod case studies. Ozone Sci Eng 21:1–22

    Article  CAS  Google Scholar 

  5. Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336

    Article  CAS  Google Scholar 

  6. Bohdziewicz J, Kwarciak A (2008) The application of hybrid system UASB reactor-RO in landfill leachate treatment. Desalination 222:128–134

    Article  CAS  Google Scholar 

  7. Kurniawan TA, Lo W, Chan GYS (2006) Physico–chemical treatments for removal of recalcitrant contaminants from landfill leachate. J Hazard Mater 129:80–100

    Article  CAS  Google Scholar 

  8. Yu J, He C et al (2014) Removal of perfluorinated compounds by membrane bioreactor with powdered activated carbon (PAC): adsorption onto sludge and PAC. Desalination 334(1):23–28

    Article  CAS  Google Scholar 

  9. Lu X, Bian X, Shi L (2002) Preparation and characterization of NF composite membrane. J Membr Sci 210:3–11

    Article  CAS  Google Scholar 

  10. Wanga Guanghui, Fana Zheng, Wua Dexin, Qina Lei, Zhanga Guoliang, Gaoa Congjie, Mengb Qin (2014) Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate. Desalination 349:136–144

    Article  Google Scholar 

  11. Ince M, Senturk E, Onkal G, Keskinler EB (2010) Further treatment of landfill leachate by nanofiltration and microfiltration—PAC. Desalination 255:52–60

    Article  CAS  Google Scholar 

  12. Remy M, Potier V, Temmink H, Rulkensb W (2010) Why low powdered activated carbon addition reduces membrane fouling in MBRs. Water Res J 44:861–867

    Article  CAS  Google Scholar 

  13. Satyawali Y, Balakrishnan M (2009) Effect of PAC addition on sludge properties in an MBR treating high strength wastewater. Water Res J 43:1577–1588

    Article  CAS  Google Scholar 

  14. Tammaro Marco, Salluzzo Antonio, Perfetto Raffaele, Lancia Amedeo (2014) A comparative evaluation of biological activated carbon and activated sludge processes for the treatment of tannery wastewater. J Environ Chem Eng 2(3):1445–1455

    Article  CAS  Google Scholar 

  15. Torretta Vincenzo, Urbini Giordano, Raboni Massimo, Copelli Sabrina, Viotti Paolo, Luciano Antonella, Mancini Giuseppe (2013) Effect of powdered activated carbon to reduce fouling in membrane bioreactors: a sustainable solution. Case study. J Sustain 5(4):1501–1509

    Article  Google Scholar 

  16. Yinga Z, Ping G (2006) Effect of powdered activated carbon dosage on retarding membrane fouling in MBR. J Sep Purif Technol 52:154–160

    Article  Google Scholar 

  17. Rahimpour A, Jahanshahi M, Peyravi M (2014) Development of pilot scale nanofiltration system for yeast industry wastewater treatment. J Environ Health Sci Eng 6:12–55

    Google Scholar 

  18. Peyravi M, Rahimpour A, Jahanshahi M (2012) Thin film composite membranes with modified polysulfone supports for organic solvent nanofiltration. J Membr Sci 423–424:225–237

    Article  Google Scholar 

  19. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  20. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC

  21. Kong L, Xiong Y et al (2013) Preparation and characterization of a hierarchical porous char from sewage sludge with superior adsorption capacity for toluene by a new two-step pore-fabricating process. Bioresour Technol 146:457–462

    Article  CAS  Google Scholar 

  22. Kristensen HG, Jørgensen PE, Henze M (1992) Characterization of functional microorganism groups and substrate in activated sludge and wastewater by AUR, NUR and OUR. J Water Sci Technol 25(6):43–57

    CAS  Google Scholar 

  23. Chan YJ, Chong MF, Law CL, Hassell DG (2009) A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chem Eng J 155:1–18

    Article  CAS  Google Scholar 

  24. Qing-Yuan H, L M, Wang C, Ji M (2015) Influence of powdered activated carbon addition on water quality, sludge properties, and microbial characteristics in the biological treatment of commingled industrial wastewater. J Hazard Mater 295:1–8

    Article  Google Scholar 

  25. Lobos J, Wisniewski C, Heran M, Grasmick A (2008) Sequencing versus continuous membrane bioreactors: effect of substrate to biomass ratio (F/M) on process performance. J Membr Sci 317:71–77

    Article  CAS  Google Scholar 

  26. Lobos J, Wisniewski C, Heran M, Grasmick A (2005) Effects of starvation conditions on biomass behavior for minimization of sludge production in membrane bioreactors. J Water Sci Technol 51:35

    CAS  Google Scholar 

  27. Winzeler HB, Belfort G (1993) Enhanced performance for pressure driven membrane processes: the argument for fluid instabilities. J Membr Sci 80:35–47

    Article  CAS  Google Scholar 

  28. Wang D, Hu Q-y et al. (2015) Evaluating the removal of organic fraction of commingled chemical industrial wastewater by activated sludge process augmented with powdered activated carbon. Arab. J. Chem

  29. Onga S-A, Toorisaka E, Hirata M, Hano T (2010) Adsorption and toxicity of heavy metals on activated sludge. Scie Asia 1513–1874:36.204

    Google Scholar 

  30. Ong SA, Lim PE, Seng CE (2003) Effects of adsorbents and copper (II) on activated sludge microorganisms and sequencing batch reactor treatment process. J Hazard Mater B103:263–277

    Article  Google Scholar 

  31. Zhang X, Li X, Zhang Q, Peng Q, Zhang W, Gao F (2014) New insight into the biological treatment by activated sludge: the role of adsorption process. Bioresour Technol 153:160–164

    Article  CAS  Google Scholar 

  32. HagMan M, la Cour Jansen J (2007) Oxygen uptake rate measurements for application at wastewater treatment plants. Vatten 63:131–138

    CAS  Google Scholar 

  33. Sun S, Nàcher CPI, Merkey B, Zhou Q, Xia S, Yang D et al (2010) Effective biological nitrogen removal treatment processes for domestic wastewaters with low C/N ratios: a review. J Environ Eng Sci 27:111–126

    Article  Google Scholar 

  34. Li AJ, Li XY, Yu HQ (2011) Effect of the food-to-microorganism (F/M) ratio on the formation and size of aerobic sludge granules. Process Biochem J 46:2269–2276

    Article  CAS  Google Scholar 

  35. Lia J, Zhaoa L, Qina L, Tiana X, Wanga A, Zhoua Y, Mengb L, Chenc Y (2016) Removal of refractory organics in nanofiltration concentrates of municipal solid waste leachate treatment plants by combined Fenton oxidative-coagulation with photo—Fenton processes. Chemosphere 146:442–449

    Article  Google Scholar 

  36. Abdulhakeem AA, Tadkaewa N, McDonaldb JA, Khanb SJ, Pricec WE, Nghiema LD (2010) Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications. J Membr Sci 365:206–215

    Article  Google Scholar 

  37. Kappela C, Kempermanb AJB, Temminka H, Zwijnenburga A, Rijnaartsc HHM, Nijmeijerb K (2014) Impacts of NF concentrate recirculation on membrane performance in an integrated MBR and NF membrane process for wastewater treatment. J Membr Sci 453:359–368

    Article  Google Scholar 

  38. Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    Article  CAS  Google Scholar 

  39. Al-Rashdi BAM, Johnson DJ, Hilal N (2013) Removal of heavy metal ions by nanofiltration. Desalination 315:2–17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Jahanshahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyravi, M., Jahanshahi, M., Alimoradi, M. et al. Old landfill leachate treatment through multistage process: membrane adsorption bioreactor and nanofitration. Bioprocess Biosyst Eng 39, 1803–1816 (2016). https://doi.org/10.1007/s00449-016-1655-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1655-0

Keywords

Navigation