Skip to main content

Advertisement

Log in

Hypercapnia slows down proliferation and apoptosis of human bone marrow promyeloblasts

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Stem cells are being applied in increasingly diverse fields of research and therapy; as such, growing and culturing them in scalable quantities would be a huge advantage for all concerned. Gas mixtures containing 5 % CO2 are a typical concentration for the in vitro culturing of cells. The effect of varying the CO2 concentration on promyeloblast KG-1a cells was investigated in this paper. KG-1a cells are characterized by high expression of CD34 surface antigen, which is an important clinical surface marker for human hematopoietic stem cells (HSCs) transplantation. KG-1a cells were cultured in three CO2 concentrations (1, 5 and 15 %). Cells were batch-cultured and analyzed daily for viability, size, morphology, proliferation, and apoptosis using flow cytometry. No considerable differences were noted in KG-1a cell morphological properties at all three CO2 levels as they retained their myeloblast appearance. Calculated population doubling time increased with an increase in CO2 concentration. Enhanced cell proliferation was seen in cells cultured in hypercapnic conditions, in contrast to significantly decreased proliferation in hypocapnic populations. Flow cytometry analysis revealed that apoptosis was significantly (p = 0.0032) delayed in hypercapnic cultures, in parallel to accelerated apoptosis in hypocapnic ones. These results, which to the best of our knowledge are novel, suggest that elevated levels of CO2 are favored for the enhanced proliferation of bone marrow (BM) progenitor cells such as HSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cabrita GJM et al (2003) Hematopoietic stem cells: from the bone to the bioreactor. Trends Biotechnol 21(5):233–240

    Article  CAS  Google Scholar 

  2. Mimeault M, Hauke R, Batra S (2007) Stem cells: a revolution in therapeutics—recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin Pharmacol Ther 82:252–264

    Article  CAS  Google Scholar 

  3. Karanes C, Nelson GO, Chitphakdithai P, Agura E, Ballen KK, Bolan CD, Porter DL, Uberti JP, King RJ, Confer DL (2008) Twenty years of unrelated donor hematopoietic cell transplantation for adult recipients facilitated by the National Marrow Donor Program. Biol Blood Marrow Transpl 14:8–15

    Article  Google Scholar 

  4. Raj asekhar VK (2009) Regulatory networks in stem cells. Humana Press, New York

    Book  Google Scholar 

  5. Heymann D (2014) Bone cancer: primary bone cancers and bone metastases. Elsevier Science, Philadelphia

    Google Scholar 

  6. Ahmadbeigi N et al (2013) Isolation, characterization, and transplantation of bone marrow-derived cell components with hematopoietic stem cell niche properties. Stem Cells Dev 22(23):3052–3061

    Article  Google Scholar 

  7. Anagnostou D, Matutes E (2012) Bone marrow lymphoid infiltrates: diagnosis and clinical impact. Springer, Berlin

    Book  Google Scholar 

  8. Wintrobe MM, Greer JP (2009) Wintrobe’s clinical hematology. Wolters Kluwer Health/Lippincott Williams & Wilkins

  9. Rudolph KL (2007) Telomeres and telomerase in aging, disease, and cancer: molecular mechanisms of adult stem cell ageing. Springer, Berlin

    Google Scholar 

  10. Karlsen TA et al (2011) Effect of three-dimensional culture and incubator gas concentration on phenotype and differentiation capability of human mesenchymal stem cells. J Cell Biochem 112(2):684–693

    Article  CAS  Google Scholar 

  11. Ma T et al (2009) Hypoxia and stem cell-based engineering of mesenchymal tissues. Biotechnol Prog 25(1):32–42

    Article  CAS  Google Scholar 

  12. Cicione C, Muiños-López E, Hermida-Gómez T, Fuentes-Boquete I, Díaz-Prado S, Blanco FJ (2013) Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int. doi:10.1155/2013/232896

  13. Tøosnnessen T (1997) Biological basis for PCO2 as a detector of ischemia. Acta Anaesthesiol Scand 41(6):659–669

    Article  Google Scholar 

  14. Porth C (2011) Essentials of pathophysiology: concepts of altered health states. Wolters Kluwer/Lippincott Williams & Wilkins

  15. Lund B, Baird-Parker TC, Gould GW (2000) Microbiological safety and quality of food. Aspen Publishers, Inc

  16. Gray DR et al (1996) CO2 in large-scale and high-density CHO cell perfusion culture. Cytotechnology 22(1–3):65–78

    Article  CAS  Google Scholar 

  17. Aunins JG, Henzler HJ (1993) Aeration in cell culture bioreactors. Biotechnology, 2nd edn. Wiley-VCH Verlag GmbH, pp 219–281

  18. Drapeau D et al (1990) Cell culture scale-up in stirred tank reactors. Annual Meeting of the Society of Industrial Microbiology, Orlando, FL

  19. Taticek R et al (1998) Effect of dissolved carbon dioxide and bicarbonate on mammalian cell metabolism and recombinant protein productivity in high density perfusion culture. Cell Culture Engineering VI, San Diego

    Google Scholar 

  20. Kimura R, Miller WM (1996) Effects of elevated pCO2 and/or osmolality on the growth and recombinant tPA production of CHO cells. Biotechnol Bioeng 52(1):152–160

    Article  CAS  Google Scholar 

  21. Madshus IH (1988) Regulation of intracellular pH in eukaryotic cells. Biochem J 250(1):1

    Article  CAS  Google Scholar 

  22. Thorens B, Vassalli P (1986) Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nat 321(6070):618–620

    Article  CAS  Google Scholar 

  23. Mostafa S, Gu X (2003) Strategies for improved dCO2 removal in large-scale fed-batch cultures. Biotechnol Progr 19:45–51

    Article  CAS  Google Scholar 

  24. Zupke C, Green J (1998) Modeling of CO2 concentration in small and large scale bioreactors. Cell Culture Engineering VI, San Diego

    Google Scholar 

  25. Ozturk S, WS Hu (2006) Cell culture technology for pharmaceutical and cell-based therapies. CRC Press, Taylor & Francis Group, LLC

  26. Jyoti S, Tandon S (2014) Hypocapnia leads to enhanced expression of pluripotency and meso–endodermal differentiation genes in mouse embryonic stem cells. Exp Cell Res 322(2):389–401

    Article  CAS  Google Scholar 

  27. Fuchs D et al (2010) Salinomycin overcomes ABC transporter-mediated multidrug and apoptosis resistance in human leukemia stem cell-like KG-1a cells. Biochem Biophy Res Commun 394(4):1098–1104

    Article  CAS  Google Scholar 

  28. Koeffler HP (1983) Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications. J Am Soc Hematol 62(4):709–721

    CAS  Google Scholar 

  29. Camacho F (1998) Development of a prototype hollow fibre bioreactor system. Graduate School of Biomedical Engineering, The University of New South Wales, Sydney

    Google Scholar 

  30. Koeffler HP et al (1980) An undifferentiated variant derived from the human acute myelogenous leukemia-cell line (Kg-1). Blood 56(2):265–273

    CAS  Google Scholar 

  31. Lim M, Ye H, Panoskaltsis N, Drakakis EM, Yue X, Cass AE, Radomska A, Mantalaris A (2007) Intelligent bioprocessing for haemotopoietic cell cultures using monitoring and design of experiments. Biotechnol Adv 25:353–368

    Article  CAS  Google Scholar 

  32. Guitart AV, Hammoud M, Dello Sbarba P, Ivanovic Z, Praloran V (2010) Slow-cycling/quiescence balance of hematopoietic stem cells is related to physiological gradient of oxygen. Exp Hematol 38

  33. Rodrigues CAV et al (2011) Stem cell cultivation in bioreactors. Biotechnol Adv 29(6):815–829

    Article  CAS  Google Scholar 

  34. Pattison RN et al (2000) Measurement and control of dissolved carbon dioxide in mammalian cell culture processes using an in situ fiber optic chemical sensor. Biotechnol Prog 16(5):769–774

    Article  CAS  Google Scholar 

  35. Morton HJ (1967) Role of carbon dioxide in erythropoiesis. Nat 215(5106):1166–1167

    Article  CAS  Google Scholar 

  36. Carney E, Bavister B (1987) Regulation of hamster embryo development in vitro by carbon dioxide. Biol Reprod 36(5):1155–1163

    Article  CAS  Google Scholar 

  37. Yang L et al (2008) Hypercapnia modulates synaptic interaction of cultured brainstem neurons. Respir Physiol Neurobiol 160(2):147–159

    Article  Google Scholar 

  38. Gray D et al (1996) CO2 in large-scale and high density CHO cell perfusion culture. Cytotechnology 22:65–78

    Article  CAS  Google Scholar 

  39. O’Toole D et al (2009) Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-κB dependent mechanism. Thorax 64(11):976–982

    Article  Google Scholar 

  40. Vohwinkel CU et al (2011) Elevated CO2 levels cause mitochondrial dysfunction and impair cell proliferation. J Biol Chem 286(43):37067–37076

    Article  CAS  Google Scholar 

  41. Cummins EP et al (2010) NF-κB links CO2 sensing to innate immunity and inflammation in mammalian cells. J Immunol 185(7):4439–4445

    Article  CAS  Google Scholar 

  42. Takeshita K et al (2003) Hypercapnic acidosis attenuates endotoxin-induced nuclear factor-κB activation. Am J Respir Cell Mol Biol 29(1):124–132

    Article  CAS  Google Scholar 

  43. Berne RM, Levy MN (1990) Principles of physiology. Mosby Inc, Mosby

    Google Scholar 

  44. Holzwarth C et al (2010) Low physiologic oxygen tensions reduce proliferation and differentiation of human multipotent mesenchymal stromal cells. BMC cell biology 11(1):11

    Article  Google Scholar 

  45. Jeanne M et al (2009) Low-oxygen and high-carbon-dioxide atmosphere improves the conservation of hematopoietic progenitors in hypothermia. Transfusion 49(8):1738–1746

    Article  Google Scholar 

  46. Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15(2):247–254

    Article  CAS  Google Scholar 

  47. Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629

    Article  CAS  Google Scholar 

  48. Nevière R (2008) Physiopathologie mitochondriale et syndrome septique. Réanimation 17(3):185–191

    Article  Google Scholar 

  49. Dontchos BN et al (2008) Optimizing CO2 normalizes pH and enhances chondrocyte viability during cold storage. J Orthop Res 26(5):643–650

    Article  CAS  Google Scholar 

  50. Seifter J, Sloane D, Ratner A (2005) Concepts in medical physiology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  51. Saretzki G et al (2004) Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cells. Stem Cells 22(6):962–971

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are Grateful to the University of Sydney and the Bosch Institute for making available all essential amenities to carry out this study. We would like to thank Dr. Robert Nordon (UNSW, Sydney) for providing the KG-1a cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Abbas.

Ethics declarations

Conflict of interest

No conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, M., Irhimeh, M.R. & Abbas, A. Hypercapnia slows down proliferation and apoptosis of human bone marrow promyeloblasts. Bioprocess Biosyst Eng 39, 1465–1475 (2016). https://doi.org/10.1007/s00449-016-1624-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-016-1624-7

Keywords

Navigation