Skip to main content
Log in

Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Volatile fatty acids (VFAs) that can be derived from food wastes were used for microbial lipid production by Chlorella protothecoides in heterotrophic cultures. The usage of VFAs as carbon sources for lipid accumulation was investigated in batch cultures. Culture medium, culture temperature, and nitrogen sources were explored for lipid production in the heterotrophic cultivation. The concentration and the ratio of VFAs exhibited significant influence on cell growth and lipid accumulation. The highest lipid yield coefficient and lipid content of C. protothecoides grown on VFAs were 0.187 g/g and 48.7 %, respectively. The lipid content and fatty acids produced using VFAs as carbon sources were similar to those seen on growth and production using glucose. The techno-economic analysis indicates that the biodiesel derived from the lipids produced by heterotrophic C. protothecoides with VFAs as carbon sources is very promising and competitive with other biofuels and fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schneider T, Graeff-Hönninger S, French W, Hernandez R, Merkt N, Claupein W, Hetrick M, Pham P (2013) Lipid and carotenoid production by oleaginous red yeas Rhodotorula glutinis cultivated on brewery effluents. Energy 61(1):34–43

    Article  CAS  Google Scholar 

  2. Timilsina GR, Shrestha A (2011) How much hope should we have for biofuels? Energy 36(4):2055–2069

    Article  Google Scholar 

  3. Nogueira LA (2011) Does biodiesel make sense? Energy 36(6):3659–3666

    Article  Google Scholar 

  4. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    Article  CAS  Google Scholar 

  5. Chisti Y (2008) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  Google Scholar 

  6. Nichols B (1965) Light induced changes in the lipids of Chlorella vulgaris. Biochimica et Biophysica Acta (BBA)-Lipids and Lipid. Metabolism 106(2):274–279

    CAS  Google Scholar 

  7. Piorreck M, Baasch K-H, Pohl P (1984) Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23(2):207–216

    Article  CAS  Google Scholar 

  8. Vladimirova M, Klyachko-Gurvich G, Maslova I, Zholdakov I, Bartsevich E (2000) A comprehensive study of Chlorella sp. IPPAS C-48 and revision of its taxonomic position. Russ J Plant Physiol 47(5):644–654

    CAS  Google Scholar 

  9. Spoehr H, Milner HW (1949) The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol 24(1):120

    Article  CAS  Google Scholar 

  10. Liu Z-Y, Wang G-C, Zhou B-C (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour Technol 99(11):4717–4722

    Article  CAS  Google Scholar 

  11. Petkov G, Garcia G (2007) Which are fatty acids of the green alga Chlorella? Biochem Syst Ecol 35(5):281–285

    Article  CAS  Google Scholar 

  12. Beal CM, Smith CH, Webber ME, Ruoff RS, Hebner RE (2011) A framework to report the production of renewable diesel from algae. BioEnergy Res 4(1):36–60

    Article  Google Scholar 

  13. Miao X, Wu Q (2006) Biodiesel production from heterotrophic microalgal oil. Bioresour Technol 97(6):841–846

    Article  CAS  Google Scholar 

  14. Wen Q, Chen Z, Li P, Han Y, Feng Y, Ren N (2013) Lipid production for biofuels from effluent-based culture by heterotrophic Chlorella Protothecoides. BioEnergy Res 6(3):877–882

    Article  CAS  Google Scholar 

  15. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507

    Article  CAS  Google Scholar 

  16. Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol 14(11):421–426

    Article  CAS  Google Scholar 

  17. Pretreatment D-A (2011) Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. Contract 303:275–3000

    Google Scholar 

  18. Wooley R, Ruth M, Sheehan J, Ibsen K, Majdeski H, Galvez A (1999) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis current and futuristic scenarios. DTIC Document

  19. Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36(2):1097–1108

    Article  CAS  Google Scholar 

  20. Lim S-J, Kim BJ, Jeong C-M, Ahn YH, Chang HN (2008) Anaerobic organic acid production of food waste in once-a-day feeding and drawing-off bioreactor. Bioresour Technol 99(16):7866–7874

    Article  CAS  Google Scholar 

  21. Lim S-J, Kim E-Y, Ahn Y-H, Chang H-N (2008) Biological nutrient removal with volatile fatty acids from food wastes in sequencing batch reactor. Korean J Chem Eng 25(1):129–133

    Article  CAS  Google Scholar 

  22. Griffiths D, Thresher C, Street H (1960) The heterotrophic nutrition of Chlorella vulgaris (Brannon No. 1 strain): with two figures in the text. Ann Bot 24(1):1–11

    CAS  Google Scholar 

  23. Perez-Garcia O, Escalante FM, de Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Article  CAS  Google Scholar 

  24. Chang HN, Kim N-J, Kang J, Jeong CM (2010) Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnol Bioprocess Eng 15(1):1–10

    Article  CAS  Google Scholar 

  25. Fei Q, Chang HN, Shang L, Kim N, Kang J (2011) The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol 102(3):2695–2701

    Article  CAS  Google Scholar 

  26. Cerón-García M, Macías-Sánchez M, Sánchez-Mirón A, García-Camacho F, Molina-Grima E (2013) A process for biodiesel production involving the heterotrophic fermentation of < i > Chlorella protothecoides </i > with glycerol as the carbon source. Appl Energy 103:341–349

    Article  Google Scholar 

  27. Papanikolaou S, Aggelis G (2002) Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol 82(1):43–49

    Article  CAS  Google Scholar 

  28. Oh-Hama T, Miyachi S (1988) Chlorella. In: Borowitzka MA, Borowitzka (eds) Micro-algal biotechnology. Cambridge UP, Cambridge, pp 3–6

    Google Scholar 

  29. Dou X, Lu X-H, Lu M-Z, Yu L-S, Xue R, Ji J-B (2013) The Effects of trace elements on the lipid productivity and fatty acid composition of nannochloropis oculata. J Renew Energy 2013:1–6. doi:10.1155/2013/671545

    Article  Google Scholar 

  30. Pahl SL, Lewis DM, Chen F, King KD (2010) Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): effect of some environmental factors. J Biosci Bioeng 109(3):235–239

    Article  CAS  Google Scholar 

  31. Colla LM, Oliveira Reinehr C, Reichert C, Costa JAV (2007) Production of biomass and nutraceutical compounds by Spirulina platensis under different temperature and nitrogen regimes. Bioresour Technol 98(7):1489–1493

    Article  CAS  Google Scholar 

  32. Gao C, Zhai Y, Ding Y, Wu Q (2010) Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy 87(3):756–761

    Article  CAS  Google Scholar 

  33. Prathima Devi M, Venkata Subhash G, Venkata Mohan S (2012) Heterotrophic cultivation of mixed microalgae for lipid accumulation and wastewater treatment during sequential growth and starvation phases: effect of nutrient supplementation. Renewable Energy 43:276–283

    Article  CAS  Google Scholar 

  34. Cheng Y, Lu Y, Gao C, Wu Q (2009) Alga-based biodiesel production and optimization using sugar cane as the feedstock. Energy Fuels 23(8):4166–4173

    Article  CAS  Google Scholar 

  35. Zhang X, Yan S, Tyagi R, Surampalli R (2013) Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew Sustain Energy Rev 26:216–223

    Article  CAS  Google Scholar 

  36. Pahl SL, Lewis DM, King KD, Chen F (2012) Heterotrophic growth and nutritional aspects of the diatom Cyclotella cryptica (Bacillariophyceae): effect of nitrogen source and concentration. J Appl Phycol 24(2):301–307

    Article  CAS  Google Scholar 

  37. Fidalgo J, Cid A, Torres E, Sukenik A, Herrero C (1998) Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166(1):105–116

    Article  CAS  Google Scholar 

  38. Theriault RJ (1965) Heterotrophic growth and production of xanthophylls by Chlorella pyrenoidosa. Appl Microbiol 13(3):402–416

    CAS  Google Scholar 

  39. Bellou S, Aggelis G (2012) Biochemical activities in Chlorella sp. and Nannochloropsis salina during lipid and sugar synthesis in a lab-scale open pond simulating reactor. J Biotechnol 164(2):318–329

    Article  CAS  Google Scholar 

  40. Chang HN, Kim N-J, Kang J, Jeong CM, Fei Q, Kim BJ, Kwon S, Lee SY, Kim J (2011) Multi-stage high cell continuous fermentation for high productivity and titer. Bioprocess Biosyst Eng 34(4):419–431

    Article  CAS  Google Scholar 

  41. Fei Q, Chang HN, Shang L (2011) Exploring low-cost carbon sources for microbial lipids production by fed-batch cultivation of Cryptococcus albidus. Biotechnol Bioprocess Eng 16(3):482–487

    Article  CAS  Google Scholar 

  42. Hoekman SK, Broch A, Robbins C, Ceniceros E, Natarajan M (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16(1):143–169

    Article  CAS  Google Scholar 

  43. Liang Y, Cui Y, Trushenski J, Blackburn JW (2010) Converting crude glycerol derived from yellow grease to lipids through yeast fermentation. Bioresour Technol 101(19):7581–7586

    Article  CAS  Google Scholar 

  44. Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102(1):57–70

    Article  CAS  Google Scholar 

  45. Sun A, Davis R, Starbuck M, Ben-Amotz A, Pate R, Pienkos PT (2011) Comparative cost analysis of algal oil production for biofuels. Energy 36(8):5169–5179

    Article  Google Scholar 

  46. Fei Q, Guarnieri MT, Tao L, Laurens LML, Dowe N, Pienkos PT (2014) Bioconversion of natural gas to liquid fuel: opportunities and challenges. Biotechnol Adv 32(3):596–614. doi:10.1016/j.biotechadv.2014.03.011

    Article  CAS  Google Scholar 

  47. Vlysidis A, Binns M, Webb C, Theodoropoulos C (2011) A techno-economic analysis of biodiesel biorefineries: assessment of integrated designs for the co-production of fuels and chemicals. Energy 36(8):4671–4683

    Article  CAS  Google Scholar 

  48. Park GW, Fei Q, Jung K, Chang HN, Kim Y-C, Kim N-j, Choi J-d-r, Kim S, Cho J (2014) Volatile fatty acids derived from waste organics provide an economical carbon source for microbial lipids/biodiesel production. Biotechnol J.  doi:10.1002/biot.201400266

  49. Shapouri H, Gallagher P (2005) USDA’s 2002 ethanol cost-of-production survey. United States Department of Agriculture, Office of the Chief Economist, Office of Energy Policy and New Uses

Download references

Acknowledgments

Author Dr. Fei gratefully acknowledges Korea National Research Foundation (KRF Scholarship) for its financial support during his Ph.D study. The authors would like to thank Dr. Nagjong Kim and Dr. Jin-dal-rae Choi for their helpful assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, Q., Fu, R., Shang, L. et al. Lipid production by microalgae Chlorella protothecoides with volatile fatty acids (VFAs) as carbon sources in heterotrophic cultivation and its economic assessment. Bioprocess Biosyst Eng 38, 691–700 (2015). https://doi.org/10.1007/s00449-014-1308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1308-0

Keywords

Navigation