Skip to main content

Advertisement

Log in

Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Clostridium thermocellum/Clostridium thermolacticum co-culture fermentation has been shown to be a promising way of producing ethanol from several carbohydrates. In this research, immobilization techniques using sodium alginate and alkali pretreatment were successfully applied on this co-culture to improve the bio-ethanol fermentation performance during consolidated bio-processing (CBP). The ethanol yield obtained increased by over 60 % (as a percentage of the theoretical maximum) as compared to free cell fermentation. For cellobiose under optimized conditions, the ethanol yields were approaching about 85 % of the theoretical efficiency. To examine the feasibility of this immobilization co-culture on lignocellulosic biomass conversion, untreated and pretreated aspen biomasses were also used for fermentation experiments. The immobilized co-culture shows clear benefits in bio-ethanol production in the CBP process using pretreated aspen. With a 3-h, 9 % NaOH pretreatment, the aspen powder fermentation yields approached 78 % of the maximum theoretical efficiency, which is almost twice the yield of the untreated aspen fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhu L, O’Dwyer JP, Chang VS, Granda CB, Holtzapple MT (2008) Structural features affecting biomass enzymatic digestibility. Bioresour Technol 99(9):3817–3828

    Article  CAS  Google Scholar 

  2. Myung KH, Kennelly JJ (1992) Effect of alkaline hydrogen peroxide and peracetic acid on in sacco ruminal digestibility of aspen sawdust. Asian Australas J Anim Sci 5(4):635–641

    Google Scholar 

  3. Gharpuray MM, Lee YH, Fan LT (1983) Structural modification of lignocellulosics by pretreatments to enhance enzymatic hydrolysis. Biotechnol Bioeng 25(1):157–172

    Article  CAS  Google Scholar 

  4. Toyama N, Ogawa K (1975) Sugar production from agricultural woody wastes by saccharification with Trichoderma viride cellulase. In: Biotechnology and Bioengineering Symposium. 5(Cellul. Chem. Energy Resour.):225–244

  5. Huang R, Su R, Qi W, He Z (2010) Understanding the key factors for enzymatic conversion of pretreated lignocellulose by partial least square analysis. Biotechnol Prog 26(2):384–392

    CAS  Google Scholar 

  6. Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9(9):1621–1651

    Article  CAS  Google Scholar 

  7. Mosier N, Wyman C, Dale B et al (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96(6):673–686

    Article  CAS  Google Scholar 

  8. Xu L, Tschirner U (2011) Improved ethanol production from various carbohydrates through anaerobic thermophilic co-culture. Bioresour Technol 102(21):10065–10071

    Article  CAS  Google Scholar 

  9. Weimer PJ, Koegel RG, Lorenz LF, Frihart CR, Kenealy WR (2005) Wood adhesives prepared from lucerne fiber fermentation residues of Ruminococcus albus and Clostridium thermocellum. Appl Microbiol Biotechnol 66(6):635–640

    Article  CAS  Google Scholar 

  10. Lynd LR, Zyl WHV, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16(5):577–583

    Article  CAS  Google Scholar 

  11. Brethauer S, Wyman CE (2010) Review: continuous hydrolysis and fermentation for cellulosic ethanol production. Bioresour Technol 101(13):4862–4874

    Article  CAS  Google Scholar 

  12. Pines G, Freeman A (1982) Immobilization and characterization of Saccharomyces cerevisiae in crosslinked, prepolymerized polyacrylamide-hydrazide. Eur J Appl Microbiol Biotechnol 16(2–3):75–80

    Article  CAS  Google Scholar 

  13. Karel SF, Libicki SB, Robertson CR (1985) The immobilization of whole cells: engineering principles. Chem Eng Sci 40(8):1321–1354

    Article  CAS  Google Scholar 

  14. Horne PN, Hsu H (1983) Immobilization of Clostridium thermocellum cells on bituminous coal particles. Anal Biochem 129(1):72–79

    Article  CAS  Google Scholar 

  15. Jo JH, Lee DS, Park D, Park JM (2008) Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from a food waste treatment process. Bioresour Technol 99(4):6666–6672

    Article  CAS  Google Scholar 

  16. Park JK, Chang HN (2000) Microencapsulation of microbial cells. Biotechnol Adv 18(4):303–319

    Article  CAS  Google Scholar 

  17. Willaert RG, Baron GV (1996) Gel entrapment and micro-encapsulation: methods, applications and engineering principles. Rev Chem Eng 12(1–2):1–205

    Article  CAS  Google Scholar 

  18. Gee KB, Choi CY (1984) A study on the ethanol production by immobilized cells of Zymomonas mobilis. Korean J Chem Eng 1(1):13–19

    Article  CAS  Google Scholar 

  19. Yamashita Y, Kurosumi A, Sasaki C, Nakamura Y (2008) Ethanol production from paper sludge by immobilized Zymomonas mobilis. Biochem Eng J 42(3):314–319

    Article  CAS  Google Scholar 

  20. Nowak J, Roszak H (1997) Co-immobilization of Aspergillus niger and Zymomonas mobilis for ethanol production from starch. Pol J Food Nutr Sci 6(3):65–70

    Google Scholar 

  21. Ryu S, Lee K (1997) Comparison of immobilization matrix for ethanol fermentation by Zymomonas mobilis and Saccharomyces cerevisiae. J Microbiol Biotechnol 7(6):438–440

    CAS  Google Scholar 

  22. Doruker P, Onsan ZI, Kirdar B (1995) Ethanol fermentation by growing S. cerevisiae cells immobilized in small ca-alginate beads. Turk J Chem 19(1):37–42

    CAS  Google Scholar 

  23. Sluiter A, Harnes B, Ruiz R, Scarlata C, Sluiter J (2009) NREL laboratory analytical procedure: determination of structural carbohydrates and lignin in biomass. 2008

  24. Klein J, Stock J, Vorlop KD (1983) Pore size and properties of spherical calcium alginate biocatalysts. Eur J Appl Microbiol Biotechnol 18(2):86–91

    Article  CAS  Google Scholar 

  25. Loomis AK, Childress AM, Daigle D, Bennett JW (1997) Alginate encapsulation of the white rot fungus Phanerochaete chrysosporium. Curr Microbiol 34(2):127–130

    Article  CAS  Google Scholar 

  26. He Q, Lokken MP, Chen S, Zhou J (2009) Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus. Bioresour Technol 100(23):5955–5965

    Article  CAS  Google Scholar 

  27. Cheetham PJ, Blunt KW, Bucke C (2004) Physical studies on cell immobilization using calcium alginate gels. Biotechnol Bioeng 21(12):1–14

    Google Scholar 

  28. Collet C, Girbal L, Peringer P, Schwitzguebel JP, Soucaille P (2006) Metabolism of lactose by Clostridium thermolacticum growing in continuous culture. Arch Microbiol 185(5):331–339

    Article  CAS  Google Scholar 

  29. Meinecke B, Bertram J, Gottschalk G (1989) Purification and characterization of the pyruvate-ferredoxin oxidoreductase from Clostridium acetobutylicum. Arch Microbiol 152(3):244–250

    Article  CAS  Google Scholar 

  30. Bothun GD, Knutson BL, Berberich JA, Strobel HJ, Nokes SE (2004) Metabolic selectivity and growth of Clostridium thermocellum in continuous culture under elevated hydrostatic pressure. Appl Microbiol Biotechnol 65(2):149–157

    CAS  Google Scholar 

  31. Simmons R, Costilow R (1962) Enzymes of glucose and pyruvate catabolism in cells, spores, and germinated spores of Clostridium botulinum. J Bacteriol 84(6):1274–1281

    CAS  Google Scholar 

  32. Otajevwo FD, Aluyi HSA (2011) Cultural conditions necessary for optimal cellulase yield by cellulolytic bacterial organisms as they relate to residual sugars released in broth medium. Modern Appl Sci 5(3):141–151

    CAS  Google Scholar 

  33. Xu L, Tschirner U (2012) Peracetic acid pretreatment of alfalfa stem and aspen biomass. BioResources 7(1):203–216

    CAS  Google Scholar 

  34. Kim YK, Kitaoka M, Krishnareddy M, Mori Y, Hayashi K (2002) Kinetic studies of a recombinant cellobiose phosphorylase (CBP) of the Clostridium thermocellum YM4 strain expressed in Escherichia coli. J Biochem 132:197–203

    Article  CAS  Google Scholar 

  35. Ren NQ, Li YF, Ding J, Lin HL, Zheng GX, Chui YG (2004) Biohydrogen II: the engineering and applications. Adv Earth Sci 19:542–546

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Tschirner, U. Immobilized anaerobic fermentation for bio-fuel production by Clostridium co-culture. Bioprocess Biosyst Eng 37, 1551–1559 (2014). https://doi.org/10.1007/s00449-014-1127-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-014-1127-3

Keywords

Navigation