Skip to main content
Log in

Model-based operational guidelines of a bioprocess for biological nitrogen removal and complete stabilisation of anaerobically digested sewage sludge

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

The concept of one-stage reactor system for biological nitrogen removal over nitrite of ammonium high loaded sidestreams is going to be applied to remove nitrogen from anaerobically digested sewage sludge and to achieve its complete stabilisation. Dealing with sludge, the organic matter needed to denitrify is present in the inflow as particulate substrate, which requires a hydrolysis step. The latter implies high anoxic hydraulic retention time (HRT). During both aerobic and anoxic phases, ammonium is released which implies the need to enlarge aerobic HRT. Both effects lead to a total HRT higher than those for nitrification–denitrification of wastewater with soluble substrate. The purpose of this paper is to define, by computer simulation, a set of theoretical criteria, which will be applied later to the operation of a pilot-scale post-aeration reactor to be located in a Spanish WWTP. These criteria will be defined by simulating the reactor performance under different operating conditions. As a conclusion, some operation guidelines have been established for the above-mentioned scenario in terms of aerobic and anoxic retention time, dissolved oxygen concentration and effluent requirements (NH4 +, NO2 and NO3 ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Al-Ghusain I, Hamoda MF, Ei-Ghany MA (2002) Nitrogen transformations during aerobic/anoxic sludge digestion. Bioresour Technol 85(2):147–154

    Article  CAS  Google Scholar 

  2. Al-Ghusain I, Hamoda MF, Ei-Ghany MA (2004) Performance characteristics of aerobic/anoxic sludge digestion at elevated temperatures. Environ Technol 25(5):501–511

    Article  CAS  Google Scholar 

  3. Aymerich E, Barrena I, Etxeberria A, García-Heras JL (2010) A new methodology to calibrate the disintegration/hydrolysis step of the ADM1 for sewage sludge. In: 12th world congress on anaerobic digestion (AD12), October 31st to November 4th, Guadalajara (Mexico)

  4. Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) Anaerobic digestion model no. 1. Scientific and Technical Report No. 13. IWA Publishing, London

    Google Scholar 

  5. De Gracia M, Sancho L, García-Heras JL, Vanrolleghem P, Ayesa E (2006) Mass and charge conservation check in dynamic models: application to the new ADM1 model. Water Sci Technol 53(1):225–240

    Article  Google Scholar 

  6. De Kreuk MK, Kishida N, Van Loosdrecht MCM (2007) Aerobic granular sludge-state of the art. Water Sci Technol 55(8–9):75–81

    Article  Google Scholar 

  7. Fux C, Boehler M, Huber P, Brunner I, Siegrist H (2002) Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant. J Biotechnol 99(3):295–306

    Article  CAS  Google Scholar 

  8. Gut L, Plaza E, Trela J, Hultman B, Bosander J (2006) Combined partial nitritation/Anammox system for treatment of digester supernatant. Water Sci Technol 53(12):149–159

    Article  CAS  Google Scholar 

  9. Hao JO, Kim MH (1990) Continuous pre-anoxic and aerobic digestion of waste activated sludge. J Environ Eng 116(5):863–879

    Article  CAS  Google Scholar 

  10. Hao JO, Kim MH, Al-Ghusain I (1991) Alternating aerobic and anoxic digestion of waste activated sludge. J Chem Technol Biotechnol 52(4):457–472

    Article  CAS  Google Scholar 

  11. Hashimoto S, Fujita M, Terai K (1982) Stabilization of waste activated sludge through the anoxic-aerobic digestion process. Biotechnol Bioeng 24(8):1789–1802

    Article  CAS  Google Scholar 

  12. Hellinga C, Schellen AAJC, Mulder JW, van Loosdrecht MCM, Heijnen JJ (1998) The SHARON process: an innovative method for nitrogen removal from ammonium-rich waste water. Water Sci Technol 37(9):135–142

    Article  CAS  Google Scholar 

  13. Henze M, Gujer W, Mino T, Van Loosdrecht MCM (2000) Activated sludge models ASM1, ASM2, ASM2d and ASM3. Scientific and Technical Report No. 9. IWA Publishing, London

    Google Scholar 

  14. Kevbrina MV, Nikolaev YA, Danilovich DA, Vanyushina AY (2011) Aerobic biological treatment of thermophilically digested sludge. Water Sci Technol 63(10):2340–2345

    Article  CAS  Google Scholar 

  15. Lopez de Armentia T, Larrea L (2009) Potential of hybrid processes for nitrogen removal from swine wastewater. Water Pract Technol 4(3):046

    Google Scholar 

  16. López de Armentia MT (2011) Comportamiento de procesos híbridos para la eliminación de nitrógeno de purines de cerdo operados con carga aplicada óptima. PhD Thesis, University of Navarra, Spain

  17. Parravicini V, Svardal K, Kroiss H (2006) Evaluating the stabilisation degree of digested sewage sludge: investigation at four municipal wastewater treatment plants. Water Sci Technol 53(8):81–90

    Article  CAS  Google Scholar 

  18. Parravicini V, Svardal K, Hornek R, Kroiss H (2008) Aeration of anaerobically digested sewage sludge for COD and nitrogen removal: optimization at large-scale. Water Sci Technol 57(2):257–264

    Article  CAS  Google Scholar 

  19. Peddie CC, Mavinic DS (1990) Pilot-scale evaluation of aerobic-anoxic sludge digestion. Can J Civ Eng 17(1):68–78

    Article  Google Scholar 

  20. Sin G, Kaelin D, Kampschreur MJ, Takács I, Wett B, Gernaey KV, Rieger L, Siegrist H, van Loosdrecht MCM (2008) Modelling nitrite in wastewater treatment systems: a discussion of different modelling concepts. Water Sci Technol 58(6):1155–1171

    Article  CAS  Google Scholar 

  21. Van Hulle SWH, Vandeweyer HJP, Meesschaert BD, Vanrolleghem PA, Dejans P, Dumoulin A (2010) Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem Eng J 162(1):1–20

    Article  Google Scholar 

  22. Van Kempen R, Mulder JOJ, Uijterlinde CA, Van Loosdrecht MCM (2001) Overview: full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering. Water Sci Technol 44(1):145–152

    Google Scholar 

  23. Wareham DG, Mavinic DS, Hall KJ (1993) Real-time control of aerobic-anoxic sludge digestion using ORP. J Environ Eng 119(1):120–136

    Article  CAS  Google Scholar 

  24. Wareham DG, Mavinic DS, Hall KJ (1994) Sludge digestion using ORP-regulated aerobic-anoxic cycles. Water Res 28(2):373–384

    Article  CAS  Google Scholar 

  25. Wett B (2007) Development and implementation of a robust deammonification process. Water Sci Technol 56(7):81–88

    Article  CAS  Google Scholar 

  26. Wyffels S, Van Hulle SWH, Boeckx P, Volcke EIP, Van Cleemput O, Vanrolleghem PA, Verstraete W (2004) Modelling and simulation of oxygen-limited partial nitritation in a membrane assisted bioreactor (MBR). Biotechnol Bioeng 86(5):531–542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Morras.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morras, M., Larrea, L. & García-Heras, J.L. Model-based operational guidelines of a bioprocess for biological nitrogen removal and complete stabilisation of anaerobically digested sewage sludge. Bioprocess Biosyst Eng 37, 1345–1352 (2014). https://doi.org/10.1007/s00449-013-1107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-1107-z

Keywords

Navigation