Skip to main content
Log in

A magnetically separable biocatalyst for resolution of racemic naproxen methyl ester

  • Short Communication
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Candida rugosa lipase (CRL) was encapsulated via the sol–gel method, using 5, 11, 17, 23-tetra-tert-butyl-25,27-bis(2-aminopyridine)carbonylmethoxy-26, 28-dihydroxy-calix[4]arene-grafted magnetic Fe3O4 nanoparticles (Calix-M-E). The catalytic activity of encapsulated lipase (Calix-M-E) was tested both in the hydrolysis of p-nitrophenyl palmitate (p-NPP) and the enantioselective hydrolysis of racemic naproxen methyl ester. The present study demonstrated that the calixarene-based compound has the potential to enhance both reaction rate and enantioselectivity of the lipase-catalyzed hydrolysis of racemic naproxen methyl ester. The encapsulated lipase (Calix-M-E) had great catalytic activity and enantioselectivity (E > 400), as well as remarkable reusability as compared to the encapsulated lipase without supports (E = 137) for S-Naproxen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021

    Article  CAS  Google Scholar 

  2. Krizzova J, Spanova A, Rittich B, Horak D (2005) Magnetic hydrophilic methacrylate-based polymer microspheres for genomic DNA isolation. J Chromatogr A 1064:247–253

    Article  Google Scholar 

  3. Ito A, Shinkai M, Honda H, Kobayashi T (2005) Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng 100:1–11

    Article  CAS  Google Scholar 

  4. Mornet S, Vasseur S, Grasset F, Goglio G, Demourgues A, Portier J et al (2006) Magnetic nanoparticle design for medical applications. Prog Solid State Chem 34:237–247

    Article  CAS  Google Scholar 

  5. Neuberger T, Schopf B, Hofmann H, Hofmann M, von Rechenberg B (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496

    Article  CAS  Google Scholar 

  6. Campo AD, Sen T, Lellouche JP, Bruce IJ (2005) Multifunctional magnetite and silica-magnetite nanoparticles: synthesis, surface activation and applications in life sciences. J Magn Magn Mater 293:33–40

    Article  Google Scholar 

  7. Saiyed ZM, Sharma S, Godawat R, Telang SD, Ramchand CN (2007) Activity and stability of alkaline phosphatase (ALP) immobilized onto magnetic nanoparticles (Fe3O4). J Biotechnol 131:240–244

    Article  CAS  Google Scholar 

  8. Sayin S, Yilmaz M (2011) Preparation and uranyl ion extraction studies of calix[4]arene-based magnetite nanoparticles. Desalination 276:328–335

    Article  CAS  Google Scholar 

  9. Yilmaz E, Sezgin M, Yilmaz M (2011) Immobilization of Candida rugosa lipase on magnetic sol-gel composite supports for enzymatic resolution (R, S)-Naproxen methyl ester. J Mol Catal B Enzym 69:35–41

    Article  CAS  Google Scholar 

  10. Brinker CJ, Scherer GW (1990) Sol–gel Science: the physics and chemistry of sol-gel processing. Academic Press, Boston

    Google Scholar 

  11. Avnir D, Braun S, Lev O, Ottolenghi M (1994) Enzymes and other proteins entrapped in sol-gel materials. Chem Mater 6:1605–1614

    Article  CAS  Google Scholar 

  12. Reetz MT, Tielmann P, Wisenhofer W, Konen W, Zonta A (2003) Second generation sol–gel encapsulated lipases: robust heterogeneous biocatalysts. Adv Synth Catal 345:717–728

    Article  CAS  Google Scholar 

  13. Sirit A, Yilmaz M (2009) Chiral Calixarenes. Turk J Chem 33:159–200

    CAS  Google Scholar 

  14. Bozkurt S, Durmaz M, Naziroglu HN, Yilmaz M, Sirit A (2012) Chiral calix[4]arenes bearing amino alcohol functionality as membrane carriers for transport of chiral amino acid methylesters and mandelic acid. Chirality 24:129–136

    Article  CAS  Google Scholar 

  15. Yilmaz M, Sirit A, Deligoz H (2011) Calixarene based materials for cations and anions in sorption processes and pollution: conventional and non-conventional sorbents for pollutant removal from wastewaters. In: Badot PM, Crini G (eds) Universitaires de Franche-Comté, Besancon-Cedex

  16. Sayin S, Yilmaz E, Yilmaz M (2011) Improvement of catalytic properties of Candida rugosa lipase by sol–gel encapsulation in the presence of magnetic calix[4]arene nanoparticles. Org Biomol Chem 9:4021–4024

    Article  CAS  Google Scholar 

  17. Sahin O, Erdemir S, Uyanik A, Yilmaz M (2009) Enantioselective hydrolysis of (R/S)-Naproxen methyl ester with sol-gel encapsulated lipase in presence of calix[n]arene derivatives. Appl Catal A 369:36–41

    Article  CAS  Google Scholar 

  18. Uyanik A, Sen N, Yilmaz M (2011) Improvement of catalytic activity of lipase from Candida rugosa via sol-gel encapsulation in the presence of calyx (aza) crown. Bioresource Technol 102:4313–4318

    Article  CAS  Google Scholar 

  19. Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  20. Chiou SH, Wu WT (2004) Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups. Biomaterials 25:197–204

    Article  CAS  Google Scholar 

  21. Chen CS, Fujimoto Y, Girdaukas G, Sih CJ (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104:7294–7299

    Article  CAS  Google Scholar 

  22. Fernandez-Lorente G, Terreni M, Mateo C, Bastida A, Fernandez-Lafuente R, Dalmases P (2001) Modulation of lipase properties in macroaqueous system by controlled enzyme immobilization: enantioselective hydrolysis of a chiral ester by immobilized Pseudomonas lipase. Enzyme Microb Technol 28:389–396

    Article  CAS  Google Scholar 

  23. Yilmaz E, Sezgin M (2012) Enhancement of the activity and enantioselectivity of lipase by sol-gel encapsulation immobilization onto β-Cyclodextrin based polymer. App Biochem Biotechnol 166:1927–1940

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Scientific Research Foundation of Selcuk University, Konya, Turkey (BAP) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elif Ozyilmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ozyilmaz, E., Sayin, S. A magnetically separable biocatalyst for resolution of racemic naproxen methyl ester. Bioprocess Biosyst Eng 36, 1803–1806 (2013). https://doi.org/10.1007/s00449-013-0941-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-013-0941-3

Keywords

Navigation