Skip to main content
Log in

Kinetic study on succinic acid and acetic acid formation during continuous cultures of Anaerobiospirillum succiniciproducens grown on glycerol

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Succinic acid-producing Anaerobiospirillum succiniciproducens was anaerobically grown in a glycerol-fed continuous bioreactor in order to investigate the physiological responses of the cell to different pH values (5.9, 6.2, or 6.5) and various dilution rates, D. In these experiments, A. succiniciproducens showed a pH-dependent glycerol consumption behavior. When pH was maintained at 5.9 or 6.5, glycerol started to accumulate even at a very low D of 0.027 h−1. Succinic acid yield was not significantly affected by the pH of the culture or the Ds. However, more acetic acid formation was observed when the growth rate of A. succiniciproducens was fast on glycerol at pH 6.2 (at D ≥ 0.15 h−1). The highest obtainable succinic acid/acetic acid ratio was 40:1, which was 10 times higher than that obtained by batch cultures grown on glucose. The maximum obtainable productivity of succinic acid was 2.1 g L−1 h−1), which was 14 times higher than that obtained by batch culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McKinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biotechnol 76:727–740

    Article  CAS  Google Scholar 

  2. Landucci R, Goodman B, Wyman C (1994) Methodology for evaluating the economics of biologically producing chemicals and materials from alternative feedstocks. Appl Biochem Biotechnol 45–6:677–696

    Article  Google Scholar 

  3. Davis CP, Cleven D, Brown J, Balish E (1976) Anaerobiospirillum, a new genus of spiral-shaped bacteria. Int J Syst Bacteriol 26:498–504

    Article  Google Scholar 

  4. Samuelov NS, Lamed R, Lowe S, Zeikus IG (1991) Influence of CO2 HCO3− levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl Environ Microbiol 57:3013–3019

    CAS  Google Scholar 

  5. Guettler MV, Rumler D, Jain MK (1999) Actinobacillus succinogenes sp nov., a novel succinic-acid-producing strain from the bovine rumen. Int J Syst Bacteriol 49:207–216

    Article  CAS  Google Scholar 

  6. Lin SKC, Du C, Koutinas A, Wang R, Webb C (2008) Substrate and product inhibition kinetics in succinic acid production by Actinobacillus succinogenes. Biochem Eng J 41:128–135

    Article  CAS  Google Scholar 

  7. Lee PC, Lee SY, Hong SH, Chang HN (2002) Isolation and characterization of a new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl Microbiol Biotechnol 58:663–668

    Article  CAS  Google Scholar 

  8. Lee SY, Kim JM, Song H, Lee JW, Kim TY, Jang YS (2008) From genome sequence to integrated bioprocess for succinic acid production by Mannheimia succiniciproducens. Appl Microbiol Biotechnol 79:11–22

    Article  CAS  Google Scholar 

  9. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  CAS  Google Scholar 

  10. Sanchez AM, Bennett GN, San KY (2005) Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant. Biotechnol Prog 21:358–365

    Article  CAS  Google Scholar 

  11. Lee PC, Lee WG, Kwon S, Lee SY, Chang HN (2000) Batch and continuous cultivation of Anaerobiospirillum succiniciproducens for the production of succinic acid from whey. Appl Microbiol Biotechnol 54:23–27

    Article  CAS  Google Scholar 

  12. Lee PC, Lee WG, Lee SY, Chang HN (2001) Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol Bioeng 72:41–48

    Article  CAS  Google Scholar 

  13. Lee PC, Lee SY, Hong SH, Chang HN, Park SC (2003) Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol Lett 25:111–114

    Article  CAS  Google Scholar 

  14. Lee PC, Lee SY, Chang HN (2008) Succinic acid Production by Anaerobiospirillum succiniciproducens ATCC 29305 growing on galactose, galactose/glucose, and galactose/lactose. J Microbiol Biotechnol 18:1792–1796

    CAS  Google Scholar 

  15. Yazdani SS, Gonzalez R (2007) Anaerobic fermentation of glycerol: a path to economic viability for the biofuels industry. Curr Opin Biotechnol 18:213–219

    Article  CAS  Google Scholar 

  16. Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135

    Article  CAS  Google Scholar 

  17. Willke T, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142

    Article  CAS  Google Scholar 

  18. El-Ziney MG, Arneborg N, Uyttendaele M, Debevere J, Jakobsen M (1998) Characterization of growth and metabolite production of Lactobacillus reuteri during glucose/glycerol cofermentation in batch and continuous cultures. Biotechnol Lett 20:913–916

    Article  CAS  Google Scholar 

  19. Raj SM, Rathnasingh C, Jo JE, Park S (2008) Production of 3-hydroxypropionic acid from glycerol by a novel recombinant Escherichia coli BL21 strain. Process Biochem 43:1440–1446

    Article  CAS  Google Scholar 

  20. Petrov K, Petrova P (2009) High production of 2,3-butanediol from glycerol by Klebsiella pneumoniae G31. Appl Microbiol Biotechnol. doi:10.1007/s00253-009-2004-x

  21. Menzel K, Zeng AP, Deckwer WD (1997) High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzym Microb Technol 20:82–86

    Article  CAS  Google Scholar 

  22. Zhao L, Zheng Y, Ma X, Wei D (2009) Effects of over-expression of glycerol dehydrogenase and 1,3-propanediol oxidoreductase on bioconversion of glycerol into 1,3-propandediol by Klebsiella pneumoniae under micro-aerobic conditions. Bioprocess Biosyst Eng 32:313–320

    Article  CAS  Google Scholar 

  23. Mothes G, Schnorpfeil C, Ackermann JU (2007) Production of PHB from crude glycerol. Eng Life Sci 7:475–479

    Article  CAS  Google Scholar 

  24. Lee PC, Lee WG, Kwon S, Lee SY, Chang HN (1999) Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2/CO2 supply and glucose concentration. Enzyme Microb Technol 24:549–554

    Article  CAS  Google Scholar 

  25. Pirt SJ (1965) The maintenance energy of bacteria in growing cultures. Proc R Soc Lond Ser 165:76–83

    Google Scholar 

  26. VanderWerf MJ, Guettler MV, Jain MK, Zeikus JG (1997) Environmental and physiological factors affecting the succinate product ratio during carbohydrate fermentation by Actinobacillus sp. 130Z. Arch Microbiol 167:332–342

    Article  CAS  Google Scholar 

  27. Rao G, Mutharasan R (1987) Altered electron flow in continuous cultures of Clostridium acetobutylicum induced by viologen dyes. Appl Environ Microbiol 53:1232–1235

    CAS  Google Scholar 

  28. Rao G, Ward PJ, Mutharasan R (1987) Manipulation of end-product distribution in strict anaerobes. Ann NY Acad Sci 506:76–83

    Article  CAS  Google Scholar 

  29. Barbirato F, Soucaille P, Camarasa C, Bories A (1998) Uncoupled glycerol distribution as the origin of the accumulation of 3-hydroxypropionaldehyde during the fermentation of glycerol by Enterobacter agglomerans CNCM 1210. Biotechnol Bioeng 58:303–305

    Article  CAS  Google Scholar 

  30. Barbirato F, Bories A (1997) Relationship between the physiology of Enterobacter agglomerans CNCM 1210 grown anaerobically on glycerol and the culture conditions. Res Microbiol 148:475–484

    Article  CAS  Google Scholar 

  31. Biebl H (2001) Fermentation of glycerol by Clostridium pasteurianum—batch and continuous culture studies. J Ind Microbiol Biotechnol 27:18–26

    Article  CAS  Google Scholar 

  32. Barbirato F, Larguier A, Conte T, Astruc S, Bories A (1997) Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210. Arch Microbiol 168:160–163

    Article  CAS  Google Scholar 

  33. Lee PC, Lee SY, Chang HN (2009) Kinetic study of organic acid formations by Anaerobiospirillum succiniciproducens during continuous cultures. J Microbiol Biotechnol (in press)

  34. Lee PC, Lee WG, Lee SY, Chang HN (1999) Effects of medium components on the growth of Anaerobiospirillum succiniciproducens and succinic acid production. Process Biochem 35:49–55

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Innovative Fund from the Ministry of Knowledge and Economics (P.C. Lee) and by the Genome-based Integrated Bioprocess Development Project from the Ministry of Education, Science and Technology (S. Y. Lee and H. N. Chang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyung Cheon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, P.C., Lee, S.Y. & Chang, H.N. Kinetic study on succinic acid and acetic acid formation during continuous cultures of Anaerobiospirillum succiniciproducens grown on glycerol. Bioprocess Biosyst Eng 33, 465–471 (2010). https://doi.org/10.1007/s00449-009-0355-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-009-0355-4

Keywords

Navigation