Skip to main content
Log in

On-line ultrasonic velocity monitoring of alcoholic fermentation kinetics

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

In this work, fundamental aspects on the ultrasonic velocity monitoring of alcoholic fermentations in synthetic broths (glucose, fructose and sucrose) and natural media (must and wort) are reported. Results are explained in terms of monosaccharide catabolism, polysaccharide hydrolysis, gas production and microorganism growth. The effect of each one of these subprocesses upon ultrasonic velocity has been independently studied. It is shown that, regarding the sound propagation, the simplest systems behave as ternary dissolutions of sugar and ethanol in water, where, in the course of time, substrates are transformed into metabolites according to the fermentation reaction. A semi-empirical approach, based on the excess volume concept and the density and velocity measurements of binary mixtures, has been used to calculate these magnitudes in the ternary mixtures and to obtain the concentrations of the main solutes throughout the fermentations, reaching a good correlation (especially for the media of simplest composition). In all the processes analyzed, the data obtained from the ultrasonic measurements followed the changes caused by the yeast metabolism, asserting the potential of mechanical waves to monitor fermentations and, in general, biotechnological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Becker T, Mitzscherling M, Delgado A (2001) Ultrasonic velocity—a non-invasive method for the determination of density during beer fermentation. Eng Life Sci 1(2):61–67

    Article  CAS  Google Scholar 

  2. Becker T, Mitzscherling M, Delgado A (2002) Hybrid data model for the improvement of an ultrasonic-based gravity measurement system. Food Control 13:223–233

    Article  Google Scholar 

  3. Belghith H, Romette JL, Thomas D (2004) An enzyme electrode for on-line determination of ethanol and methanol. Biotechnol Bioeng 30(9):1001–1005

    Article  Google Scholar 

  4. Belogol’skii VA, Sekoyan SS, Samorukova LM, Stefanov SR, Levtsov VI (1999) Pressure dependence of the sound velocity in distilled water. Meas Tech 42(4):406–413

    Google Scholar 

  5. Buckin V, Kudryashov E (2002) High-resolution ultrasonic spectroscopy. Biochemist 24(4):25–27

    Google Scholar 

  6. Cha YL, Hitzmann B (2004) Ultrasonic measurements and its evaluation for the monitoring of Saccharomyces cerevisiae cultivation. Bioautomation 1:16–29

    Google Scholar 

  7. Contreras NI, Fairley P, McClements DJ, Povey MJW (1992) Analysis of the sugar content of fruit juices and drinks using ultrasonic velocity measurements. Int J Food Sci Tech 27:515–529

    CAS  Google Scholar 

  8. Dolatowski ZJ, Stadnik J, Stasiak D (2007) Applications of ultrasound in food technology. Acta Sci Pol Technol Aliment 6(3):89–99

    Google Scholar 

  9. Elmehedi HM, Page JH, Scalon MG (2003) Monitoring dough fermentation using acoustic waves. Trans IChemE 81,C:217–223

    Google Scholar 

  10. Kudryashov E, Smyth C, O’Driscoll B, Buckin V (2003) High-resolution ultrasonic spectroscopy: for analysis of chemical reactions in real time. Spectroscopy 18(10):26–32

    CAS  Google Scholar 

  11. Lide DR (2003) CRC Handbook of chemistry and physics, 83rd edn. CRC Press, New York

    Google Scholar 

  12. Lin Y, Tanaka S (2006) Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol 69:627–642

    Article  CAS  Google Scholar 

  13. Liu YC, Wang FS, Lee WC (2001) On-line monitoring and controlling system for fermentation processes. Biochem Eng J 7(1):17–25

    Article  CAS  Google Scholar 

  14. McClements DJ (1997) Ultrasonic characterization of foods and drinks: Principles, methods and applications. Crit Rev Food Sci 37(1):1–46

    Article  CAS  Google Scholar 

  15. Minnaert M (1933) On musical air-bubbles and the sound of running water. Philos Mag 16:235–248

    Google Scholar 

  16. Mortimer RK (2000) Evolution and variation of the yeast (Saccharomyces) genome. Genome Res 10(4):403–409

    Article  CAS  Google Scholar 

  17. Mulet A, Benedito J, Bon J, Sanjuan N (1999) Review: low intensity ultrasonics in food technology. Food Sci Tech Int 5(4):285–297

    Article  Google Scholar 

  18. Pons MN, Halme A, Heinzle E, Karim MN, Lee KS, Lim HC, Saner U (1991) Bioprocess monitoring and control. Hanser Publisheres, Feuchtwangen

    Google Scholar 

  19. Povey MJW, Mason TJ (1998) Ultrasound in food processing. Blackie Academic & Professional, London

    Google Scholar 

  20. Resa PI, Elvira L, Montero de Espinosa FR (2004) Concentration control in alcoholic fermentation processes from ultrasonic velocity measurements. Food Res Int 37(6):587–594

    Article  CAS  Google Scholar 

  21. Resa P, Bolumar T, Elvira L, Pérez G, Montero de Espinosa F (2007) Monitoring of lactic acid fermentation in culture broth using ultrasonic velocity. J Food Eng 78(3):1083–1091

    Article  CAS  Google Scholar 

  22. Resa P (2006) Monitorización de procesos fermentativos por ultrasonidos. Sección de Publicaciones de la E.T.S. de Ingenieros Industriales, Madrid

    Google Scholar 

  23. Salgado AM, Folly ROM, Valdman B, Valero F (2004) Model based soft-sensor for on-line determination of substrate. Appl Biochem Biotech 113(1–3):137–144

    Article  Google Scholar 

  24. Schaaffs W (1967) Molecular acoustics. In: Hellwege K (ed) Atomic and molecular physics, vol. 5. Landolt-Bornstein, Berlin

    Google Scholar 

  25. Sint Jan MV, Guarini M, Guesalaga A, Pérez-Correa JR, Vargas Y (2008) Ultrasound based measurements of sugar and ethanol concentrations in hydroalcoholic solutions. Food Control 19:31–35

    Article  CAS  Google Scholar 

  26. Shaw AD, Kaderbhai N, Jones A, Woodward AM, Goodacre R, Rowland JJ, Kell DB (1999) Non-invasive, on-line monitoring of the biotransformation by yeast of glucose to ethanol using dispersive Raman spectroscopy and chemometrics. Appl Spectrosc 53(11):1419–1428

    Article  CAS  Google Scholar 

  27. Urick RJ (1947) A sound velocity method for determining the compressibility of finely divided substances. J Appl Phys 18:983–987

    Article  Google Scholar 

  28. Veale EL, Irudayaraj J, Demirci A (2007) An on-line approach to monitor ethanol fermentation using FTIR spectroscopy. Biotechnol Prog 23:494–500

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by an I3P predoctoral fellowship (CSIC/European Social Fund) and a CSIC Intramural Frontiers Project (Ref. 200550F0190). Besides, the authors would like to thank Dr. Manuel Gómez Pallarés and Dr. Josefina Vila Crespo from the Universidad de Valladolid for their collaboration in the wine fermentation measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Resa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resa, P., Elvira, L., Montero de Espinosa, F. et al. On-line ultrasonic velocity monitoring of alcoholic fermentation kinetics. Bioprocess Biosyst Eng 32, 321–331 (2009). https://doi.org/10.1007/s00449-008-0251-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-008-0251-3

Keywords

Navigation