Skip to main content
Log in

Bioprocess kinetics in a horizontal rotating tubular bioreactor

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A horizontal rotating tubular bioreactor (HRTB) is a plug flow bioreactor whose interior is provided with O-ring-shaped partition walls that serve as carriers for microbial biomass. During this investigation, microbial biomass was grown in suspension and on the bioreactor inner surface as a microbial biofilm with average mass that was considerably higher than suspended biomass. The dynamics of bioprocess in HRTB was studied by different combinations of process parameters (bioreactor rotation speed and mean residence time) and it was monitored by withdrawing the samples from five positions along the bioreactor. During this investigation it was also observed that mean residence time had a more pronounced effect on the bioprocess dynamics than bioreactor rotation speed. For the description of bioprocess kinetics in HRTB an unstructured kinetic model was established that defines biomass growth, product formations and substrate consumption rate by using a modified Monod (Levenspiel) model. This kinetic model defines changes in suspension and in microbial biofilm, and it shows relatively good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4
Fig. 5
Fig. 6.

Similar content being viewed by others

Abbreviations

f :

Ratio between volume of biofilm and liquid in HRTB (m3 m−3)

K S :

Substrate saturation constant (kg m−3)

K SM2 :

Substrate saturation constant for biofim maintenance (kg m−3)

K SP1 :

Substrate saturation constant for ethanol production in biofilm (kg m−3)

K SP2 :

Substrate saturation constant for lactate production in biofilm (kg m−3)

L :

Bioreactor length (m)

m 2 :

Specific maintenance rate of biofilm (kg kg−1 h−1)

m 2max :

Maximal specific maintenance rate of biofilm (kg kg−1 h−1)

n :

Bioreactor rotation speed (s−1)

P 1 :

Ethanol concentration (kg m−3)

P 1*:

Critical ethanol concentration (kg m−3)

P 1,0 :

Initial ethanol concentration (kg m−3)

P 2 :

Lactate concentration (kg m−3)

P 2,0 :

Initial lactate concentration (kg m−3)

q P1 :

Specific rate of ethanol production in suspension (kg kg−1 h−1)

q P1max :

Maximal specific rate of ethanol production in suspension (kg kg−1 h−1)

q P1,2 :

Specific rate of ethanol production in biofilm (kg kg−1 h−1)

q P1,2max :

Maximal specific rate of ethanol production in biofilm (kg kg−1 h−1)

q P2,2 :

Specific rate of lactate production in biofilm (kg kg−1 h−1)

q P2,2max :

Maximal specific rate of lactate production in biofilm (kg kg−1 h−1)

S :

Substrate concentration (kg m−3)

S 0 :

Initial substrate concentration in medium inflow (kg m−3)

w :

Mean liquid flow velocity (m s−1)

X 1 :

Biomass concentration in suspension (kg m−3)

X 2A :

Average areal density of biofilm (kg m−2)

X 2V :

Average volumetric density of biofilm (X 2A ) (kg m−3)

X 2 :

Biofilm volumetric density recalculated on the volume of suspension in HRTB [X 2V f; Eqs. 3, 4, 5] (kg m−3)

Y P1/S :

Ethanol conversion coefficient (kg kg−1)

Y P2/S :

Lactate conversion coefficient (kg kg−1)

Y X1/S :

Biomass conversion coefficient (kg kg−1)

δ :

Average biofilm thickness (m)

μ :

Specific growth rate (s−1)

μ max :

Maximal specific growth rate (s−1)

τ :

Mean residence time (s)

References

  1. Moser A (1985) Imperfectly mixed bioreactor systems. In: Moo-Young M (ed) Comprehensive biotechnology, vol 2. Pergamon Press, Oxford, pp 77–98

  2. Wolfbauer O, Klettner H, Moser F (1978) Reaction engineering models of biological waste water treatment and kinetics of activated sludge process. Chem Eng Sci 33:953–960

    Article  CAS  Google Scholar 

  3. Bishop PL, Kinner NE (1986) Aerobic fixed—film process. In: Rehm HJ, Reed G (eds) Biotechnology, vol 8. VCH Verlagsgesellschaft, Weinheim, pp 113–176

  4. Wu CY, Smits ED, Huang TY (1980) Modelling of rotating biological contactor systems. Biotechnol Bioeng 22:2055–2064

    Google Scholar 

  5. Radwan KH, Ramanujam TK (1997) Studies on organic removal of 2,4-dichlorophenol in wastewaters using a modified RBC. Bioprocess Eng 16:219–223

    Article  CAS  Google Scholar 

  6. Swaminathan G, Ramanujam TK (1999) Effect of substrate concentration on biodegradation of 2,4-dichlorophenol using modified rotating biological contactors. Bioprocess Eng 21:169–173

    Article  CAS  Google Scholar 

  7. Kornegay BH, Andrews JF (1968) Kinetics of fixed film biological reactors. J Water Pollut Control Fed 40:460–467

    Google Scholar 

  8. Andrews GF (1991) Aerobic wastewater process models. In Rehm HJ, Reed G, Pühler A, Stadler P (eds) Biotechnology, vol 4. VCH Verlagsgesellschaft, Weinheim, pp 409–437

  9. Converti A, Del Borghi A, Zilli M, Arni S, Del Borghi M (1999) Anaerobic digestion of the vegetable fraction of municipal refuses: mesophilic verses thermophilic conditions. Bioprocess Eng 21:371–376

    Article  CAS  Google Scholar 

  10. Benitez FJ, Beltran-Heredia J, Torregrosa J, Acero JL (1997) Improvement of the anaerobic digestion of olive mill wastewaters by prior ozonation pretretment. Acta Biotechnol 17:169–175

    Article  CAS  Google Scholar 

  11. Levenspiel O (1980) The Monod equation: a revisit and a generalisation to product inhibition situations. Biotechnol Bioeng 22:1671–1687

    CAS  Google Scholar 

  12. Han K, Levenspiel O (1988) Extended Monod kinetics for substrate, product and cell inhibition. Biotechnol Bioeng 32:430–437

    CAS  Google Scholar 

  13. Andrews JF (1968) Modelling of biological treatment process. Biotechnol Bioeng 10:707–723

    CAS  Google Scholar 

  14. Lewandowski Z (1985) Denitrification in packed bed reactors presence of chromium (VI). Wat Res 21:147–153

    Article  Google Scholar 

  15. Gaudy AF, Ekambaram A, Rozich AF (1988) Practical methodology for predicting critical operation range of biological systems treating inhibitory substances. J Water Pollut Control Fed 60:77–85

    CAS  Google Scholar 

  16. Brown SC, Grady CPL, Tabak HH (1990) Biodegradation and kinetics of substituted phenols. Water Res 24:853–861

    CAS  Google Scholar 

  17. Sathish N, Young JC, Tabak HH (1993) Protocol for determining the rate of biodegradation of toxic organic chemicals in anaerobic processes. In: Tedder DW, Pohland FG (eds) Emerging technologies in hazardous waste management III. ACS Symp Ser 518, Am Chem Soc, Washington DC, pp 203–218

  18. Gavrilescu M (2002) Engineering concerns and new developments in anaerobic wastewater treatment. Clean Technol Environ Policy 3:346–362

    Article  Google Scholar 

  19. Ohara H, Hiyama K, Yoshida T (1992) Non-competitive product inhibition in lactic acid fermentation from glucose. Appl Microbiol Biotechnol 36:773–776

    CAS  Google Scholar 

  20. Silva EM, Yang ST (1995) Kinetics and stability of fibrous bed bioreactor for continuous production of lactic acid from unsupplemented acid whey. J Biotechnol 41:59–70

    Article  CAS  Google Scholar 

  21. Moser A (1988) Bioprocess technology—kinetics and reactors. Springer, Berlin Heidelberg New York

  22. Borchardt JA (1971) Biological waste treatment using rotating discs. Biotechnol Bioeng Symp 2:131–140

    Google Scholar 

  23. Šantek B, Horvat P, Novak S, Mayr B, Moser A, Marić V (1996) Mathematical model of mixing in a horizontal rotating tubular bioreactor: “Simple flow” model. Bioprocess Eng 14:195–204

    Article  Google Scholar 

  24. Šantek B, Horvat P, Novak S, Mayr B, Moser A, Marić V (1996) Mathematical model of mixing in a horizontal rotating tubular bioreactor: “Spiral flow” model. Bioprocess Eng 14:223–229

    Article  Google Scholar 

  25. Šantek B, Horvat P, Novak S, Moser A, Marić V (1998) Studies on mixing in horizontal rotating tubular bioreactor: Part I Optimisation of adjustable parameters for “spiral flow” model. Bioprocess Eng 18:467–473

    Article  Google Scholar 

  26. Šantek B, Horvat P, Novak S, Sunko D, Moser A, Marić V (2000) Estimation of axial dispersion in horizontal rotating tubular bioreactor by means of a structured model. Bioprocess Eng 23:265–274

    Article  Google Scholar 

  27. Šantek B, Horvat P, Novak S, Moser A, Marić V (1998) Studies on mixing in horizontal rotating tubular bioreactor: Part II Prediction systems for adjustable parameters of “spiral flow” model. Bioprocess Eng 19:19–28

    Article  Google Scholar 

  28. Šantek B, Horvat P, Novak S, Moser A, Marić V (1998) Studies on mixing in horizontal rotating tubular bioreactor: Part III Influence of liquid level and distance between the partition walls on prediction systems for adjustable model parameters. Bioprocess Eng 19:91–102

    Article  Google Scholar 

  29. Peyton BM (1996) Effects of shear stress and substrate loading rate on Pseudomonas aeruginosa biofilm thickness and density. Water Res 30:29–36

    Article  CAS  Google Scholar 

  30. Gavrilescu M, Macoveanu M (2000) Attached-growth process engineering in wastewater treatment. Bioprocess Eng 23:95–106

    Article  CAS  Google Scholar 

  31. Burden R, Faires JD (1988) Numerical analysis. PWS-KENT, Boston

  32. Branch MA, Grace A (1996) Matlab optimisation toolbox user’s guide. MathWorks Inc, Natick, USA

  33. Käppeli O (1986) Regulation of carbon mechanism in Saccharomyces cerevisiae and related yeasts. Adv Microb Physiol 28:181–209

    CAS  PubMed  Google Scholar 

  34. Moser A (1991) Tubular bioreactor: case study of bioreactor performance for industrial production and scientific research. Biotechnol Bioeng 37:1054–1065

    CAS  Google Scholar 

  35. Lu ZX, Fujimura T (1993) A study on ethanol production of yeast cells immobilized with polymer carrier produced by radiation polymerization. Radiat Phys Chem 42:923–926

    Article  CAS  Google Scholar 

  36. Venkataraman R, Ramanujam TK (1998) A study of microbiology of biological film layer in rotating biological contactors. Bioprocess Eng 18:181–186

    Article  CAS  Google Scholar 

  37. Pirt SJ (1975) Principles of microbe and cell cultivation. Blackwell Scientific, Oxford

  38. Ogawa M, Shimizu K, Nomoto K, Tanaka R, Hamabata T, Yamasaki S, Takeda T, Takeda Y (2001) Inhibition of in vitro growth of Shiga toxin-producing Escherichia coli O 157:H7 by probiotic Lactobacillus strains due to production of lactic acid. Int J Food Microb 68:135–140

    Article  CAS  Google Scholar 

  39. Narendranath NV, Thomas KC, Ingledew WM (2001) Acetic and lactic acid inhibition of growth of Saccharomyces cerevisiae by different mechanisms. J Am Soc Brew Chem 59:187–194

    CAS  Google Scholar 

  40. Moser A (1985) Reaction and mass transfer interactions in microbial systems. In: Rehm HJ, Reed G (eds) Biotechnology, vol 2. VCH Verlagsgesellschaft, Weinheim, pp 195–305

  41. van Hoek P, van Dijken JP, Prock JT (1998) Effect of specific growth rate on fermentative capacity of baker’s yeast. Appl Environ Microbiol 64:4226–4233

    PubMed  Google Scholar 

  42. Stewart PS (1993) A model of biofilm detachment. Biotechnol Bioeng 41:111–117

    Google Scholar 

  43. Peyton BM, Characklis WG (1993) A statistical analysis of the effect of substrate utilisation and shear stress on the kinetics of biofilm detachment. Biotechnol Bioeng 41:728–735

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Šantek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivančić, M., Šantek, B., Novak, S. et al. Bioprocess kinetics in a horizontal rotating tubular bioreactor. Bioprocess Biosyst Eng 26, 169–175 (2004). https://doi.org/10.1007/s00449-003-0346-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-003-0346-9

Keywords

Navigation