Skip to main content
Log in

The opening subplinian phase of the Hekla 1991 eruption: properties of the tephra fall deposit

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

The 1991 Hekla eruption started on 17th of January with an intense 50-min-long explosive phase that transitioned into fire fountain activity lasting for 2 days. The eruptive plume rose to maximum height in about 10 min and the total mass of tephra deposited from the opening phase was 8.6 × 109 kg (VEI 3 event). The principal axis of tephra fall is to the NNE of Hekla and grain-size analysis reveals a systematic decrease in grain-size away from source. Majority of sample sites show typically unimodal grain-size distributions, although a few have bimodal distributions where the secondary mode is a subtle finer peak. The calculated total grain-size distribution (TGSD) is bimodal, with a coarse primary peak (−3.5 to −2.5 φ) and a subordinate fine peak (2.5 to 3.5 φ). The coarse peak is lapilli-dominated and was deposited within the first 25 km of transport, whereas the fine peak is coarse-ash-dominated and fits well with the modal grain-size of samples deposited >65 km from Hekla. Ascent rate of the magma and conditions for vesiculation in the shallow conduit became increasingly uniform with time through the 1991 opening phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alfano F, Bonadonna C, Watt S, Connor C, Volentic A, Pyle DM (2016) Reconstruction of total grain size distribution of the climactic phase of a long-lasting eruption: the example of the 2008–2013 Caitén eruption. Bull Volcanol 78:46. doi:10.1007/s00445-016-1040-5

    Article  Google Scholar 

  • Andronico D, Scollo S, Caruso S, Cristaldi A (2008) The 2002-03 Etna explosive activity: tephra dispersal and features of the deposits. Journal of Geophysical Research: Solid Earth 113(4):1–16

    Google Scholar 

  • Andronico D, Scollo S, Cristaldi A, Ferrari F (2009) Monitoring ash emission episodes at Mt. Etna: the 16 November 2006 case study. J Volcanol Geotherm Res 180:123–134

    Article  Google Scholar 

  • Andronico D, Scollo S, Lo Castro MD, Cristaldi A, Lodato L, Taddeucci J (2014) Eruption dynamics and tephra dispersal from the 24 November 2006 paroxysm at South-East Crater, Mt Etna, Italy. J Volcanol Geotherm Res 274:78–91

    Article  Google Scholar 

  • Biass, S., & Bonadonna, C. (2014). TOTGS: Total grainsize distribution of tephra fallout. Retrieved from https://vhub.org/resources/3297

  • Biass S, Scaini C, Bonadonna C, Folch A, Smith K, Höskuldsson A (2014) A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes—part 1: hazard assessment. Nat Hazards Earth Syst Sci 14:2265–2287

    Article  Google Scholar 

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418

    Article  Google Scholar 

  • Bonadonna C, Costa A (2013) Plume height, volume, and classification of explosive volcanic eruptions based on the Weibull function. Bull Volcanol 75:1–19

    Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67(5):441–456

    Article  Google Scholar 

  • Bonadonna C, Phillips JC (2003) Sedimentation from strong volcanic plumes. J Geophys Res 108:1–28

    Article  Google Scholar 

  • Bonadonna C, Ernst GGJ, Sparks RSJ (1998) Thickness variations and volume estimates of tephra fall deposits: the importance of particle Reynolds number. J Volcanol Geotherm Res 81(3–4):173–187

    Article  Google Scholar 

  • Bonadonna C, Cioni R, Pistolesi M, Elissondo M, Baumann V (2015a) Sedimentation of long-lasting wind-affected volcanic plumes: the example of the 2011 rhyolitic Cordón Caulle eruption, Chile. Bull Volcanol 77:13

    Article  Google Scholar 

  • Bonadonna C, Pistolesi M, Cioni R, Degruyter W, Elissondo M, Baumann V (2015b) Dynamics of wind-affected volcanic plumes: the example of the 2011 Cordón Caulle eruption, Chile. Journal of Geophysics Research: Solid Earth 120:2242–2261

    Article  Google Scholar 

  • Bursik MI, Sparks RSJ, Gilbert JS, Carey SN (1992) Sedimentation of tephra by volcanic plumes: I. Theory and its comparison with a study of the Fogo A Plinian deposit, Sao Miguel (Azores). Bull Volcanol 54:329–344

    Article  Google Scholar 

  • Carey SN, Sigurdsson H (1982) Influence of particle aggregation on deposition of distal tephra from the May 18, 1980, eruption of Mount St. Helens volcano. Journal of Geophysical Research: Solid Earth 87(B8):7061–7072. doi:10.1029/JB087iB08p07061

    Article  Google Scholar 

  • Carey S, Sparks RSJ (1986) Quantitative models of the fallout and dispersal of tephra from volcanic eruption columns. Bull Volcanol 48:109–125

    Article  Google Scholar 

  • Carey RJ, Houghton BF, Thordarson T (2009) Tephra dispersal and eruption dynamics of wet and dry phases of the 1875 eruption of Askja Volcano, Iceland. Bull Volcanol 72(3):259–278

    Article  Google Scholar 

  • Degruyter W, Bonadonna B (2012) Improving on mass flow rate estimates of volcanic eruptions. Geophys Res Lett 39:1–6

    Article  Google Scholar 

  • Durant AJ, Rose WI (2009) Sedimentological constraints on hydrometeor-enhanced particle deposition: 1992 eruptions of Crater Peak, Alaska. J Volcanol Geotherm Res 186(1–2):40–59

    Article  Google Scholar 

  • Durant AJ, Rose WI, Carey S, Volentik ACM (2009) Hydrometeor-enhanced tephra sedimentation: constraints from the 18 May 1980 eruption of Mount St. Helens. Journal of Geophysical Research 114:1–21

    Article  Google Scholar 

  • Eychenne J, Pennec J-L, Troncoso L, Gouhier M, Nedelec J-M (2011) Causes and consequences of bimodal grain-size distribution of tephra fall deposited during the August 2006 Tungurahua eruption (Ecuador). Bull Volcanol 74(1):187–205

    Article  Google Scholar 

  • Eychenne J, Cashman K, Rust A, Durant A (2015) Impact of the lateral blast on spatial pattern and grain size characteristics of the 18 May 1980 Mount St. Helens fallout deposits. J Geophys Res Solid Earth 120:6018–6038

  • Fierstein J, Nathenson M (1992) Another look at the calculation of fallout tephra volumes. Bull Volcanol 54(2):156–167

    Article  Google Scholar 

  • Grönvold K, Larsen G, Einarsson P, Thorarinsson S, Saemundsson K (1983) The Hekla eruption 1980-1981. Bull Volcanol 46:350–363

    Article  Google Scholar 

  • Gudmundsson A, Sæmundsson K (1992) Heklugosið 1991: Gangur gossins og aflfræði Heklu. Náttúrufræðingurinn 61:145–158

    Google Scholar 

  • Gudmundsson A, Oskarsson N, Grönvold K, Saemundsson K, Sigurdsson O, Stefansson R, Thordarson T (1992) The 1991 eruption of Hekla, Iceland. Bull Volcanol 54(3):238–246

    Google Scholar 

  • Gurioli L, Houghton BF, Cashman KV, Cioni R (2005) Complex changes in eruption dynamics during the 79 AD eruption of Vesuvius. Bull Volcanol 67(2):144–159. doi:10.1007/s00445-004-0368-4

    Article  Google Scholar 

  • Haraldsson KÖ (2001) The Hekla 2000 eruption, distribution of ash from the first days of the eruption (in Icelandic). BSc thesis. University of Iceland, Reykjavík

    Google Scholar 

  • Höskuldsson Á, Óskarsson N, Pedersen R, Grönvold K, Vogfjörð K, Ólafsdóttir R (2007) The millennium eruption of Hekla in February 2000. Bull Volcanol 70(2):169–182

    Article  Google Scholar 

  • Houghton BF, Wilson CJN (1989) A vesicularity index for pyroclastic deposits. Bull Volcanol 51:451–462

    Article  Google Scholar 

  • Houghton BF, Wilson CJN, Del Carlo P, Coltelli M, Sable JE, Carey R (2004) The influence of conduit processes on changes in style of basaltic Plinian eruptions: Tarawera 1886 and Etna 122 BC. J Volcanol Geotherm Res 137:1–14

    Article  Google Scholar 

  • Inman D (1952) Measures for describing the size distribution of sediments. J Sediment Petrol 22(3):125–145

    Google Scholar 

  • Jakobsson S (1979) Petrology of recent basalts of the Eastern Volcanic Zone, Iceland. Acta Naturalia Islandica 26:1–103

    Google Scholar 

  • Janebo MH (2016) Historical explosive eruptions in Hekla and Askja volcanoes; eruption dynamics and source parameters. PhD dissertation. University of Hawaii at Manoa, Honolulu

  • Janebo MH, Thordarson T, Houghton BF, Larsen G, Carey RJ (2016) Dispersal of key subplinian-Plinian tephra from Hekla volcano, Iceland: implications for eruption source parameters. Bull Volcanol 78. doi:10.1007/s00445-016-1059-7

  • Jóhannesson H, Einarsson S (1990) Glefsur úr sögu hrauna og jarðvegs sunnan Heklu. In: Arnalds A (ed) Græðum Ísland. Landgræðslan, Reykjavik, pp 123–136

    Google Scholar 

  • Jóhannesson H, Sæmundsson K (1998) Geological map of Iceland, 1:500.000 bedrock geology, Reykjavik. Náttúrufræðistofnun Íslands, Reykjavík

    Google Scholar 

  • Kaminski E, Jaupart C (1998) The size distribution of pyroclasts and the fragmentation sequence in explosive volcanic eruptions. J Geophys Res 103(98):29759–29779

    Article  Google Scholar 

  • Klug C, Cashman KV (1996) Permeability development in vesiculating magmas: implications for fragmentation. Bull Volcanol 58:87–100

    Article  Google Scholar 

  • Kueppers, U., Scheu, B., Spieler, O., & Dingwell, D. B. (2006). Fragmentation efficiency of explosive volcanic eruptions: a study of experimentally generated pyroclasts, 153, 125–135

  • Lacasse C, Karlsdóttir S, Larsen G, Soosalu H, Rose WI, Ernst GGJ (2004) Weather radar observations of the Hekla 2000 eruption cloud, Iceland. Bull Volcanol 66:457–473

    Article  Google Scholar 

  • Larsen G, Thorarinsson S (1977) H4 and other acid Hekla tephra layers. Jökull 27:28–46

    Google Scholar 

  • Larsen G, Vilmundardóttir EG, Thorkelsson B (1992) Heklugosið 1991 : Gjóskufallið og gjóskulagið frá fyrsta degi gossins. Náttúrufræðingurinn 61:159–176

    Google Scholar 

  • Lautze NC, Houghton BF (2006) Linking variable explosion style and magma textures during 2002 at Stromboli Volcano, Italy. Bull Volcanol 69(4):445–460

    Article  Google Scholar 

  • Linde AT, Agustsson K, Sacks IS, Stefansson R (1993) Mechanism of the 1991 eruption of Hekla from continuous borehole strain monitoring. Nature 365(21):737–740

    Article  Google Scholar 

  • Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geotherm Res 186(1–2):10–21

    Article  Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):1231

    Article  Google Scholar 

  • Oddsson B, Gudmundsson MT, Larsen G, Karlsdóttir S (2012) Monitoring of the plume from the basaltic phreatomagmatic 2004 Grímsvötn eruption—application of weather radar and comparison with plume models. Bull Volcanol 74:1395–1407

    Article  Google Scholar 

  • Óskarsson N (1980) The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 Hekla eruption. J Volcanol Geotherm Res 8:251–266

    Article  Google Scholar 

  • Polacci M, Baker DR, Mancini L, Polacci M, Baker DR, Mancini L, Tromba G (2006) Three dimensional investigation of volcanic textures by X-ray microtomography and implications for conduit processes. Geophys Res Lett 33:1–5

    Article  Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15

    Article  Google Scholar 

  • Rose WI, Durant AJ (2009) El Chichón volcano, April 4, 1982: volcanic cloud history and fine ash fallout. Nat Hazards 51(2):363–374

    Article  Google Scholar 

  • Sæmundsson K (1979) Outline of the geology of Iceland. Jökull 29:7–28

    Google Scholar 

  • Scollo S, Del Carlo P, Coltelli M (2007) Tephra fallout of 2001 Etna flank eruption: analysis of the deposit and plume dispersion. J Volcanol Geotherm Res 160(1–2):147–164

    Article  Google Scholar 

  • Soosalu H, Einarsson P, Jakobsdottir S (2003) Volcanic tremor related to the 1991 eruption of the Hekla Volcano, Iceland. Bull Volcanol 65(8):562–577

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Ablay GJ, Thomas RME, Carey SN (1992) Sedimentation of tephra by volcanic plumes. Part 2: controls on thickness and grain-size variations of tephra deposits. Bull Volcanol 54:685–695

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes, 1st edn. Wiley, Chichester

    Google Scholar 

  • Stevenson, J., Larsen, G., & Thordarson, T. (2015). Physical volcanology of the prehistoric Hekla 3 and Hekla 4 eruptions, Iceland. EGU General Assembly, abstract id.4207

  • Thorarinsson S (1968) Heklueldar. Rangæingafélagið, Reykjavik

    Google Scholar 

  • Thorarinsson S, Sigvaldason GE (1972) The Hekla eruption of 1970. Bull Volcanol 36(2):269–288

    Article  Google Scholar 

  • Thordarson T, Larsen G (2007) Volcanism in Iceland in historical time: volcano types, eruption styles and eruptive history. J Geodyn 43(1):118–152

    Article  Google Scholar 

  • Þráinsson, B. Þ. (1991). Iceland national radio, 19:00 news, January 17th 1991

  • Varekamp JC, Luhr JF, Prestegaard KL (1984) The 1982 eruptions of El Chichón Volcano (Chiapas, Mexico): character of the eruptions, ash-fall deposits, and gas phase. J Volcanol Geotherm Res 23(1–2):39–68

    Article  Google Scholar 

  • Walker GPL (1973) Explosive volcanic eruptions—a new classification scheme. Geol Rundsch 62(2):431–556

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Icelandic Centre for Research grant 110077-0061, the Landsvirkjun Energy Research Fund grant 02-2012, the south Iceland research fund 2014, and NSF EAR-12-20596. Special thanks to William Moreland, Christopher Lofthouse, Lee Masson, Simon N. Lauritssen, Elísa Ólafsdóttir, Maria Janebo, and Sigurður Gústafsson for fieldwork assistance. The manuscript was improved significantly by comments from M. Janebo, two anonymous reviewers, executive editor J.D.L White, and editor C. Bonadonna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonas Gudnason.

Additional information

Editorial responsibility: C. Bonadonna

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudnason, J., Thordarson, T., Houghton, B.F. et al. The opening subplinian phase of the Hekla 1991 eruption: properties of the tephra fall deposit. Bull Volcanol 79, 34 (2017). https://doi.org/10.1007/s00445-017-1118-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-017-1118-8

Keywords

Navigation