Skip to main content
Log in

Relationship between volcanic ash fallouts and seismic tremor: quantitative assessment of the 2015 eruptive period at Cotopaxi volcano, Ecuador

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Understanding the relationships between geophysical signals and volcanic products is critical to improving real-time volcanic hazard assessment. Thanks to high-frequency sampling campaigns of ash fallouts (15 campaigns, 461 samples), the 2015 Cotopaxi eruption is an outstanding candidate for quantitatively comparing the amplitude of seismic tremor with the amount of ash emitted. This eruption emitted a total of ~1.2E + 9 kg of ash (~8.6E + 5 m3) during four distinct phases, with masses ranging from 3.5E + 7 to 7.7E + 8 kg of ash. We compare the ash fallout mass and the corresponding cumulative quadratic median amplitude of the seismic tremor and find excellent correlations when the dataset is divided by eruptive phase. We use scaling factors based on the individual correlations to reconstruct the eruptive process and to extract synthetic Eruption Source Parameters (daily mass of ash, mass eruption rate, and column height) from the seismic records. We hypothesize that the change in scaling factor through time, associated with a decrease in seismic amplitudes compared to ash emissions, is the result of a more efficient fragmentation and transport process. These results open the possibility of feeding numerical models with continuous geophysical data, after adequate calibration, in order to better characterize volcanic hazards during explosive eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alparone S, Andronico D, Lodato L, Sgroi T (2003) Relationship between tremor and volcanic activity during the southeast crater eruption on Mount Etna in early 2000. J Geophys Res-Sol Ea 108(B5):2241. doi:10.1029/2002JB001866

    Article  Google Scholar 

  • Andronico D, Scollo S, Cristaldi A, Ferrari F (2009) Monitoring ash emission episodes at Mt. Etna: the 16 November 2006 case study. J Volcanol Geoth Res 180(2–4):123–134. doi:10.1016/j.jvolgeores.2008.10.019

    Article  Google Scholar 

  • Andronico D, Lo Castro MD, Sciotto M, Spina L (2013) The 2010 ash emissions at the summit craters of Mt Etna: relationship with seismo-acoustic signals. J Geophys Res Solid Earth 118:51–70. doi:10.1029/2012JB009895

    Article  Google Scholar 

  • Battaglia J, Aki K, Ferrazzini V (2005) Location of tremor sources and estimation of lava output using tremor source amplitude on the piton de la fournaise volcano: 2. Estimation of lava output. J Volcanol Geoth Res 147:291–308

    Article  Google Scholar 

  • Bernard B (2013) Homemade ashmeter: a low-cost, high-efficiency solution to improve tephra field-data collection for contemporary explosive eruptions. J Appl Volcanol 2(1):1–9. doi:10.1186/2191-5040-2-1

    Article  Google Scholar 

  • Bernard B, Bustillos J, Wade B, Hidalgo S (2013) Influence of the wind direction variability on the quantification of tephra fallouts: December 2012 and march 2013 Tungurahua eruptions. Avances en Ciencias e Ingenierías 5(1):A14–A21

    Google Scholar 

  • Biass S, Bonadonna C (2011) A quantitative uncertainty assessment of eruptive parameters derived from tephra deposits: the example of two large eruptions of Cotopaxi volcano, Ecuador. Bull Volcanol 73(1):73–90

    Article  Google Scholar 

  • Bonadonna C, Costa A (2012) Estimating the volume of tephra deposits: a new simple strategy. Geology 40(5):415–418. doi:10.1130/G32769.1

    Article  Google Scholar 

  • Bonadonna C, Houghton BF (2005) Total grain-size distribution and volume of tephra-fall deposits. Bull Volcanol 67:441–456

    Article  Google Scholar 

  • Bonadonna C, Folch A, Loughlin S, Puempel H (2012) Future developments in modelling and monitoring of volcanic ash clouds: outcomes from the first IAVCEI-WMO workshop on ash dispersal forecast and civil aviation. Bull Volcanol 74(1):1–10. doi:10.1007/s00445-011-0508-6

    Article  Google Scholar 

  • Bursik M (2001) Effect of wind on the rise height of volcanic plumes. Geophys Res Lett 28:3621–3624. doi:10.1029/2001GL013393

    Article  Google Scholar 

  • Caplan-Auerbach J, Bellesiles A, Fernandes JK (2010) Estimates of eruption velocity and plume height from infrasonic recordings of the 2006 eruption of Augustine volcano, Alaska. J Volcanol Geoth Res 189(1–2):12–18. doi:10.1016/j.jvolgeores.2009.10.002

    Article  Google Scholar 

  • Cashman KV, Scheu B (2015) Magmatic fragmentation. In: Sigurdsson H (ed) The encyclopedia of volcanoes, 2nd edn. Academic Press, Amsterdam, p 459–471

  • Collini E, Osores MS, Folch A, Viramonte JG, Villarosa G, Salmuni G (2012) Volcanic ash forecast during the June 2011 cordón caulle eruption. Nat Hazards 66(2):389–412. doi:10.1007/s11069-012-0492-y

    Article  Google Scholar 

  • Connor CB, Hill B, Winfrey B, Franklin N, La Femina PC (2001) Estimation of volcanic hazards from tephra fallout. Nat Hazards Rev 2(1):33–42. doi:10.1061/(ASCE)1527-6988(2001)2:1(33)

    Article  Google Scholar 

  • Coppola D, Piscopo D, Staudacher T, Cigolini C (2009) Lava discharge rate and effusive pattern at piton de la fournaise from MODIS data. J Volcanol Geoth Res 184(1–2):174–192. doi:10.1016/j.jvolgeores.2008.11.031

    Article  Google Scholar 

  • Costa A, Macedonio G, Folch A (2006) A three-dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet Sci Lett 241(3–4):634–647. doi:10.1016/j.epsl.2005.11.019

    Article  Google Scholar 

  • Devenish BJ (2013) Using simple plume models to refine the source mass flux of volcanic eruptions according to atmospheric conditions. J Volcanol Geotherm Res. doi:10.1016/j.jvolgeores.2013.02.015

    Google Scholar 

  • Donnadieu F (2012) Volcanological applications of doppler radars: A review and examples from a transportable pulse radar in L-Band. In: Bech J (ed) Doppler radar observations—weather radar, wind profiler, ionospheric radar, and other advanced applications, InTech

  • Donnadieu F, Freville P, Hervier C, Coltelli M, Scollo S, Prestifilippo M, Valade S, Rivet S, Cacault P (2016) Near-source Doppler radar monitoring of tephra plumes at Etna. J Volcanol Geotherm Res 312:26–39. doi:10.1016/j.jvolgeores.2016.01.009

    Article  Google Scholar 

  • Dürig T, Gudmundsson MT, Karmann S, Zimanowski B, Dellino P, Rietze M, Büttner R (2015) Mass eruption rates in pulsating eruptions estimated from video analysis of the gas thrust-buoyancy transition—a case study of the 2010 eruption of Eyjafjallajökull, Iceland. Earth Planets Space 67:1–17. doi:10.1186/s40623-015-0351-7

    Article  Google Scholar 

  • Engwell SL, Sparks RSJ, Aspinall WP (2013) Quantifying uncertainties in the measurement of tephra fall thickness. J Appl Volcanol 2(1):1–12. doi:10.1186/2191-5040-2-5

    Article  Google Scholar 

  • Hall M, Mothes P (2008) The rhyolitic-andesitic eruptive history of Cotopaxi volcano, Ecuador. Bull Volcanol 70(6):675–702. doi:10.1007/s00445-007-0161-2

    Article  Google Scholar 

  • Hibert C, Mangeney A, Polacci M, Muro AD, Vergniolle S, Ferrazzini V, Peltier A, Taisne B, Burton M, Dewez T, Grandjean G, Dupont A, Staudacher T, Brenguier F, Kowalski P, Boissier P, Catherine P, Lauret F (2015) Toward continuous quantification of lava extrusion rate: results from the multidisciplinary analysis of the 2 January 2010 eruption of piton de la fournaise volcano, La Réunion. J Geophys Res-Sol Ea 120(5):2014JB011769. doi:10.1002/2014JB011769

    Google Scholar 

  • Hickey J, Gottsmann J, Mothes P (2015) Estimating volcanic deformation source parameters with a finite element inversion: the 2001–2002 unrest at Cotopaxi volcano, Ecuador. J Geophys Res-Sol Ea 120(3):2014JB011731. doi:10.1002/2014JB011731

    Google Scholar 

  • Hidalgo S, Bernard B, Battaglia J, Gaunt E, Barrington C, Andrade D, Ramón P, Arellano S, Yepes H, Proaño A, Almeida S, Sierra D, Dinger F, Kelly P, Parra R, Bobrowski N, Galle B, Almeida M, Mothes P, Alvarado A, IGEPN (2016) Cotopaxi volcano’s unrest and eruptive activity in 2015: Mild awakening after 73 years of quiescence. In: Abstract volume of the 2016 EGU General Assembly. p EGU2016–5043-1

  • Houghton BF, Swanson DA, Rausch J, Carey RJ, Fagents SA, Orr TR (2013) Pushing the volcanic explosivity index to its limit and beyond: constraints from exceptionally weak explosive eruptions at Kilauea in 2008. Geology v 41:627–630. doi:10.1130/G34146.1

    Article  Google Scholar 

  • Jenkins SF, Wilson TM, Magill CR, Miller V, Stewart C, Marzocchi W, Boulton M (2015) Volcanic ash fall hazard and risk: Technical background paper for the UNISDR 2015 global assessment report on disaster risk reduction. Global volcano model and IAVCEI

  • Johnson JB, Aster RC (2005) Relative partitioning of acoustic and seismic energy during Strombolian eruptions. J Volcanol Geoth Res 148:334–354. doi:10.1016/j.jvolgeores.2005.05.002

    Article  Google Scholar 

  • Kratzmann DJ, Carey SN, Fero J, Scasso RA, Naranjo J (2010) Simulations of tephra dispersal from the 1991 explosive eruptions of Hudson volcano, Chile. J Volcanol Geoth Res 190(3–4):337–352. doi:10.1016/j.jvolgeores.2009.11.021

    Article  Google Scholar 

  • Kumagai H, Mothes P, Ruiz M, Maeda Y (2015) An approach to source characterization of tremor signals associated with eruptions and lahars. Earth Planets Space 67(1):178. doi:10.1186/s40623-015-0349-1

    Article  Google Scholar 

  • Mastin LG, Guffanti M, Servranckx R, Webley P, Barsotti S, Dean K, Durant A, Ewert JW, Neri A, Rose WI, Schneider D, Siebert L, Stunder B, Swanson G, Tupper A, Volentik A, Waythomas CF (2009) A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions. J Volcanol Geoth Res 186(1–2):10–21. doi:10.1016/j.jvolgeores.2009.01.008

    Article  Google Scholar 

  • Matoza RS, Fee D, Neilsen TB, Gee KL, Ogden DE (2013) Aeroacoustics of volcanic jets: acoustic power estimation and jet velocity dependence. J Geophys Res Solid Earth 118:6269. doi:10.1002/2013JB010303

    Article  Google Scholar 

  • McNutt SR (1992) Volcanic tremor, in encyclopedia of earth system science. Academic Press, San Diego, California, pp. 417–425

    Google Scholar 

  • McNutt SR (1994) Volcanic tremor amplitude correlated with Volcanic Explosivity Index and its potential use in determining ash hazards to aviation. Acta Vulcanol 5:193–196

    Google Scholar 

  • McNutt SR (2005) Volcanic seismology. Annu Rev Earth Planet Sci 32:15.1–15.31. doi:10.1146/annurev.earth.33.092203.122459

    Google Scholar 

  • McNutt SR, Nishimura T (2008) Volcanic tremor during eruptions: temporal characteristics, scaling and constraints on conduit size and processes. J Volcanol Geotherm Res 178:10–18. doi:10.1016/j.jvolgeores.2008.03.010

    Article  Google Scholar 

  • Molina I, Kumagai H, García-Aristizábal A, Nakano M, Mothes P (2008) Source process of very-long-period events accompanying long-period signals at Cotopaxi volcano, Ecuador. J Volcanol Geoth Res 176(1):119–133. doi:10.1016/j.jvolgeores.2007.07.019

    Article  Google Scholar 

  • Newhall CG, Self S (1982) The volcanic explosivity index (VEI): an estimate of explosive magnitude for historical volcanism. J Geophys Res 87(C2):123–1238

    Article  Google Scholar 

  • Parra R, Bernard B, Narváez D, Le Pennec J-L, Hasselle N, Folch A (2016) Eruption source parameters for forecasting ash dispersion and deposition from vulcanian eruptions at Tungurahua volcano: insights from field data from the July 2013 eruption. J Volcanol Geoth Res 309:1–13. doi:10.1016/j.jvolgeores.2015.11.001

    Article  Google Scholar 

  • Pistolesi M, Rosi M, Cioni R, Cashman KV, Rossotti A, Aguilera E (2011) Physical volcanology of the post–twelfth-century activity at Cotopaxi volcano, Ecuador: behavior of an andesitic central volcano. Geol Soc Am Bull 123(5–6):1193–1215. doi:10.1130/B30301.1

    Article  Google Scholar 

  • Prejean SG, Brodsky EE (2011) Volcanic plume height measured by seismic waves based on a mechanical model. J Geophys Res 116:B01306. doi:10.1029/2010JB007620

    Article  Google Scholar 

  • Pyle DM (1989) The thickness, volume and grainsize of tephra fall deposits. Bull Volcanol 51:1–15

    Article  Google Scholar 

  • Pyle DM (2000) Sizes of volcanic eruptions. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic Press, London, pp. 263–270

    Google Scholar 

  • Ripepe M, Bonadonna C, Folch A, Delle Donne D, Lacanna G, Marchetti E, Höskuldsson A (2013) Ash-plume dynamics and eruption source parameters by infrasound and thermal imagery: the 2010 Eyjafjallajökull eruption. Earth Planet Sci Lett 366:112–121. doi:10.1016/j.epsl.2013.02.005

    Article  Google Scholar 

  • Ruiz M, Guillier B, Chatelain J-L, Yepes H, Hall M, Ramon P (1998) Possible causes for the seismic activity observed in Cotopaxi volcano, Ecuador. Geophys Res Lett 25:2305–2308

    Article  Google Scholar 

  • Sparks RSJ (2003) Forecasting volcanic eruptions. Earth Planet Sci Lett 210(1–2):1–15. doi:10.1016/S0012-821X(03)00124-9

    Article  Google Scholar 

  • Sparks RSJ, Bursik MI, Carey SN, Gilbert JS, Glaze LS, Sigurdsson H, Woods AW (1997) Volcanic plumes. John Wiley & Sons, Chichester

    Google Scholar 

Download references

Acknowledgments

Field campaigns for this study were funded by the project SENPLADES. Seismic data came from the JICA seismic network. This research has been conducted in the context of the Laboratoire Mixte International “Séismes et Volcans dans les Andes du Nord” of IRD. This work is the contribution n°2 of the project “Grupo de Investigación sobre la Ceniza Volcánica en Ecuador”. The authors thank the personnel of IGEPN, in particular those who participated to the field campaigns. Comments from D. Pyle, T. Nishimura, and an anonymous reviewer greatly improved a first version of this paper. We thank two anonymous reviewers and J. Taddeucci for their constructive comments which helped improving this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bernard.

Additional information

Editorial responsibility: J. Taddeucci

Electronic supplementary material

Online Resources 1

(XLS 95 kb)

Online Resources 2

(PDF 7665 kb)

Online Resources 3

(PDF 38 kb)

Online Resources 4

(PDF 46 kb)

Online Resources 5

(XLS 3382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernard, B., Battaglia, J., Proaño, A. et al. Relationship between volcanic ash fallouts and seismic tremor: quantitative assessment of the 2015 eruptive period at Cotopaxi volcano, Ecuador. Bull Volcanol 78, 80 (2016). https://doi.org/10.1007/s00445-016-1077-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00445-016-1077-5

Keywords

Navigation