Skip to main content
Log in

Magma convection and mixing dynamics as a source of Ultra-Long-Period oscillations

  • Research Article
  • Published:
Bulletin of Volcanology Aims and scope Submit manuscript

Abstract

Many volcanic eruptions are shortly preceded by injection of new magma into a pre-existing, shallow (<10 km) magma chamber, causing convection and mixing between the incoming and resident magmas. These processes may trigger dyke propagation and further magma rise, inducing long-term (days to months) volcano deformation, seismic swarms, gravity anomalies, and changes in the composition of volcanic plumes and fumaroles, eventually culminating in an eruption. Although new magma injection into shallow magma chambers can lead to hazardous event, such injection is still not systematically detected and recognized. Here, we present the results of numerical simulations of magma convection and mixing in geometrically complex magmatic systems, and describe the multiparametric dynamics associated with buoyant magma injection. Our results reveal unexpected pressure trends and pressure oscillations in the Ultra-Long-Period (ULP) range of minutes, related to the generation of discrete plumes of rising magma. Very long pressure oscillation wavelengths translate into comparably ULP ground displacements with amplitudes of order 10−4–10−2 m. Thus, new magma injection into magma chambers beneath volcanoes can be revealed by ULP ground displacement measured at the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aiuppa A, Moretti R, Federico C, Giudice G, Guerrieri S, Liuzzo M, Papale P, Shinohara H, Valenza M (2007) Forecasting Etna eruptions by real-time observation of volcanic gas composition. Geology 35:1115–1118. doi:10.1130/G24149A.1

    Article  Google Scholar 

  • Aki K, Richards PG (2002) Quantitative seismology. University Science, Sausalito

    Google Scholar 

  • Andronico D, Branca S, Calvari S, Burton M, Caltabiano T, Corsaro RA, Del Carlo P, Garfi G, Lodato L, Miraglia L, Murè F, Neri M, Pecora E, Pompilio M, Salerno G, Spampinato L (2005) A multi-disciplinary study of the 2002–03 Etna eruption: insights into a complex plumbing system. Bull Volcanol 67:314–330. doi:10.1029/2008GL034242

    Article  Google Scholar 

  • Arienzo I, Moretti R, Civetta L, Orsi G, Papale P (2010) The feeding system of Agnano–Monte Spina eruption (Campi Flegrei, Italy): dragging the past into present activity and future scenarios. Chem Geol 270:135–147. doi:10.1016/j.chemgeo.2009.11.012

    Article  Google Scholar 

  • Bateman R (1995) The interplay between crystallization, replenishment and hybridization in large felsic magma chambers. Earth Sci Rev 39:91–106

    Article  Google Scholar 

  • Bonaccorso A, Aloisi M, Mattia M (2002) Dyke emplacement forerunning the Etna July 2001 eruption modelled through continuous tilt and GPS data. Geophys Res Lett 29. doi:10.1029/2001GL014397

  • Cannata A, Hellweg M, Di Grazia G, Ford S, Alparone S, Gresta S, Montalto P, Patanè D (2009) Long period and very long period events at Mt. Etna volcano: characteristics, variability and causality, and implications for their sources. J Volcanol Geotherm Res 187:227–249

    Article  Google Scholar 

  • Carbone D, Zuccarello L, Saccorotti G, Filippo G (2006) Analysis of simultaneous gravity and tremor anomalies observed during the 2002–2003 Etna eruption. Earth Planet Sci Lett 245:616–629

    Article  Google Scholar 

  • Caricchi L, Burlini L, Ulmer P, Gerya T, Vassalli M, Papale P (2007) Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet Sci Lett 264:402–419

    Article  Google Scholar 

  • Corsaro RA, Miraglia L, Pompilio M (2007) Petrologic evidence of a complex plumbing system feeding the July–August 2001 eruption of Mt. Etna, Sicily, Italy. Bull Volcanol 69:401–421

    Article  Google Scholar 

  • Costa A, Caricchi L, Bagdassarov N (2009) A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem Geophys Geosyst 10. doi:10.1029/2008GC002138

  • Di Renzo V, Arienzo I, Civetta L, D’Antonio M, Tonarini S, Di Vito MA, Orsi G (2011) The magmatic feeding system of the Campi Flegrei caldera: architecture and temporal evolution. Chem Geol 281:227–241

    Article  Google Scholar 

  • Folch A, Marti J (1998) The generation of overpressure in felsic magma chambers by replenishment. Earth Planet Sci Lett 163:301–314

    Article  Google Scholar 

  • Giordano D, Russell JK, Dingwell DB (2008) Viscosity of magmatic liquids: a model. Earth Planet Sci Lett 271:123–143

    Article  Google Scholar 

  • Giordano D, Polacci M, Papale P, Caricchi L (2010) Rheological control on the dynamics of explosive activity in the 2000 summit eruption of Mt. Etna. Solid Earth 1:61–69. doi:10.5194/se-1-61-2010

    Article  Google Scholar 

  • Havskov J, Alguacil G (2004) Instrumentation in earthquake seismology. Springer, New York, p 358

    Google Scholar 

  • Houlí H, Montagner JP (2007) Hidden dykes detected on ultra long period seismic signals at Piton de la Fournaise volcano. Earth Planet Sci Lett 261:1–8

    Article  Google Scholar 

  • Lay L, Wallace TC (1995) Modern global seismology. Academic Press, New York, p 521

    Google Scholar 

  • Lokmer I, Saccorotti G, Di Lieto B, Bean CJ (2008) Temporal evolution of long-period seismicity at Etna Volcano, Italy, and its relationships with the 2004–2005 eruption. Earth Planet Sci Lett 266:205–220

    Article  Google Scholar 

  • Longo A, Vassalli M, Papale P, Barsanti M (2006) Numerical simulation of convection and mixing in magma chambers replenished with CO2-rich magma. Geophys Res Lett 33. doi:10.1029/2006GL027760

  • Mangiacapra A, Moretti R, Rutherford MJ, Civetta L, Orsi G, Papale P (2008) The deep magmatic system of the Campi Flegrei caldera (Italy). Geophys Res Lett 35. doi:10.1029/2008GL035550

  • O’Brien GS, Bean CJ (2004) A 3D discrete elastic lattice method for seismic wave propagation in heterogeneous media with topography. Geophys Res Lett 31. doi:10.1029/2004GL020069

  • Papale P (2001) Dynamics of magma flow in volcanic conduits with variable fragmentation efficiency and nonequilibrium pumice degassing. J Geophys Res 106:11043–11065

    Article  Google Scholar 

  • Papale P, Moretti R, Barbato D (2006) The compositional dependence of the multicomponent volatile saturation surface in silicate melts. Chem Geol 229:78–95

    Article  Google Scholar 

  • Patanè D, Di Grazia G, Cannata A, Montalto P, Boschi E (2008) Shallow magma pathway geometry at Mt. Etna volcano. Geochem Geophys Geosyst 9. doi:10.1029/2008GC002131

  • Sanderson R, Johnson J, Lees J (2010) Ultra-long period seismic signals and cyclic deflation coincident with eruptions at Santiaguito volcano, Guatemala. J Volcanol Geotherm Res 198:35–44

    Article  Google Scholar 

  • Scarpa R (2001) Predicting volcanic eruptions. Science 293:615–616. doi:10.1126/science.1063606

    Article  Google Scholar 

  • Snyder D (2000) Thermal effects of the intrusion of basaltic magma into a more silicic magma chamber and implications for eruption triggering. Earth Planet Sci Lett 175:257–273

    Article  Google Scholar 

  • Spilliaert N, Allard P, Métrich N, Sobolev AV (2006) Melt inclusion record of the conditions of ascent, degassing, and extrusion of volatile-rich alkali basalt during the powerful 2002 flank eruption of Mount Etna (Italy). J Geophys Res 111. doi:10.1029/2005JB003934

  • Voight B, Linde AT, Sacks IS, Mattioli GS, Sparks RSJ, Elsworth D, Hidayat D, Malin PE, Shalev E, Widiwijayanti C, Young SR, Bass V, Clarke A, Dunkley P, Johnston W, McWorther N, Neuberg J, Williams P (2006) Unprecedented pressure increase in deep magma reservoir triggered by lava-dome collapse. Geophys Res Lett 33. doi:10.1029/2005GL024870

  • Wallace P, Anderson AT Jr (2000) Volatiles in magmas. In: Sigurdsson H, Houghton B, McNutt SR, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, San Diego, pp 149–170

    Google Scholar 

  • Zollo A, Maercklin N, Vassallo M, Dello Iacono D, Virieux J, Gasparini P (2008) Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys Res Lett 35. doi:10.1029/2008GL034242

Download references

Acknowledgments

This work has been performed in the frame of Projects FIRB RBAU01M72W and RBPR05B2ZJ; and Projects INGV-DPC 2004–2006 V3_2, and 2007–2009 V1 and V4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Longo.

Additional information

Editorial responsibility: D. Dingwell

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Movie 1

This movie shows magma composition for the Mount Etna case. Initial compositions are made of 90 wt.% of the corresponding component and 10 wt.% of the other component, to avoid numerical shifts to component fractions >1 or <0. The zero on the depth scale corresponds to sea level (AVI 5,412 kb)

Supplementary Movie 2

This movie shows overpressure for the Mount Etna case. Overpressure is given by pressure at local time–space minus the pressure at same place and time zero. The zero on the depth scale corresponds to sea level (AVI 5,645 kb)

Supplementary Movie 3

This movie shows gas volume fraction for the Mount Etna case. Calculated gas volume and multiphase magma densities at magma interface and time zero are 10 vol.% and 2,250 kg/m3 (shallow magma), and 35 vol.% and 1,700 kg/m3 (deep magma). The zero on the depth scale corresponds to sea level (AVI 5,433 kb)

Supplementary Movie 4

This movie shows composition for the Campi Flegrei case. Initial compositions are made of 90 wt.% of the corresponding component and 10 wt.% of the other component, to avoid numerical shifts to component fractions >1 or <0. The depth scale on the left refers to meters below sea level (AVI 5,157 kb)

Supplementary Movie 5

This movie shows overpressure for the Campi Flegrei case. Overpressure is given by pressure at local time–space minus the pressure at same place and time zero. The depth scale on the left refers to meters below sea level (AVI 2,308 kb)

Supplementary Movie 6

This movie shows gas volume fraction for the Campi Flegrei case. Calculated gas volume fractions and multiphase magma densities at magma interface and time zero are 3.5 vol.% and 2,400 kg/m3 (shoshonite), and 7.5 vol.% and 2,350 kg/m3 (basalt). The depth scale on the left indicates meters below sea level (AVI 2,284 kb)

ESM 1

(DOC 13,835 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longo, A., Papale, P., Vassalli, M. et al. Magma convection and mixing dynamics as a source of Ultra-Long-Period oscillations. Bull Volcanol 74, 873–880 (2012). https://doi.org/10.1007/s00445-011-0570-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00445-011-0570-0

Keywords

Navigation