Skip to main content

Advertisement

Log in

Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles

  • Community ecology – original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Elevational diversity gradients are typically studied without considering the complex small-scale topography of large mountains, which generates habitats of strongly different environmental conditions within the same elevational zones. Here we analyzed the importance of small-scale topography for elevational diversity patterns of hyperdiverse tropical leaf beetles (Coleoptera: Chrysomelidae). We compared patterns of elevational diversity and species composition of beetles in two types of forests (on mountain ridges and in valleys) and analyzed whether differences in the rate of species turnover among forest habitats lead to shifts in patterns of elevational diversity when scaling up from the local study site to the elevational belt level. We sampled beetle assemblages at 36 sites in the Podocarpus National Park, Ecuador, which were equally distributed over two forest habitats and three elevational levels. DNA barcoding and Poisson tree processes modelling were used to delimitate putative species. On average, local leaf beetle diversity showed a clear hump-shaped pattern. However, only diversity in forests on mountain ridges peaked at mid-elevation, while beetle diversity in valleys was similarly high at low- and mid-elevation and only declined at highest elevations. A higher turnover of species assemblages at lower than at mid-elevations caused a shift from a hump-shaped diversity pattern found at the local level to a low-elevation plateau pattern (with similar species numbers at low and mid-elevation) at the elevational belt level. Our study reveals an important role of small-scale topography and spatial scale for the inference on gradients of elevational species diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barber NA, Marquis RJ (2011) Leaf quality, predators, and stochastic processes in the assembly of a diverse herbivore community. Ecology 92:699–708

    Article  PubMed  Google Scholar 

  • Basset Y, Samuelson GA (1996) Ecological characteristics of an arboreal community of Chrysomelidae in Papua New Guinea. In: Jolivet P, Cox ML (eds) Chrysomelidae biology 2. Brill, pp 243–262

  • Basset Y, Cizek L, Cuénoud P et al (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484

    Article  CAS  PubMed  Google Scholar 

  • Beck E, Makeschin F, Haubrich F, Richter M, Bendix J, Valerezo C (2008) The Ecosystem (Reserva Biológica San Francisco). In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, Berlin, Germany, pp 41–48

  • Bendix J, Homeier J, Ortiz EC, Emck P, Breckle S, Richter M, Beck E (2006) Seasonality of weather and tree phenology in a tropical evergreen mountain rain forest. Int J Biometeorol 50:370–384

    Article  CAS  PubMed  Google Scholar 

  • Bertuzzo E, Carrara F, Maric L, Altermatt F, Rodriguez-Iturbe I, Rinaldo A (2016) Geomorphic controls on elevational gradients of species richness. Proc Natl Acad Sci USA 113:1737–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bini LM, Landeiro VL, Padial AA, Siqueira T, Heino J (2014) Nutrient enrichment is related to two facets of beta diversity for stream invertebrates across the United States. Ecology 95:1569–1578

    Article  PubMed  Google Scholar 

  • Black R, Prince J (1983) Fauna associated with the coral Pocillopora damicornis at the southern limit of its distribution in Western Australia. J Biogeogr 10:135–152

    Article  Google Scholar 

  • Brehm G, Colwell RK, Kluge J (2007) The role of environment and mid-domain effect on moth species richness along a tropical elevational gradient. Glob Ecol Biogeogr 16:205–219

    Article  Google Scholar 

  • Brehm G, Hebert PDN, Colwell RK, Adams MO, Bodner F, Friedemann K, Möckel L, Fiedler K (2016) Turning up the heat at a hotspot: DNA barcodes reveal 80% more species of geometrid moths along an Andean elevational gradient. PLoS One 11:e0150327

    Article  PubMed  PubMed Central  Google Scholar 

  • Brose U, Martinez ND, Williams RJ (2003) Estimating species richness: sensitivity to sample coverage and insensitivity to spatial patterns. Ecology 84:2364–2377

    Article  Google Scholar 

  • Brown JH (2001) Mammals on mountainsides: elevational patterns of diversity. Glob Ecol Biogeogr 10:101–109

    Article  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Chao A, Chazdon RL, Colwell RK, Shen TJ (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol Lett 8:148–159

    Article  Google Scholar 

  • Chase JM, Leibold MA (2002) Spatial scale dictates the productivity-biodiversity relationship. Nature 416:427–430

    Article  CAS  PubMed  Google Scholar 

  • Colwell RK, Rahbek C, Gotelli NJ (2004) The mid-domain effect and species richness patterns: what have we learned so far? Am Nat 163:E1–E23

    Article  PubMed  Google Scholar 

  • Colwell RK, Gotelli NJ, Ashton LA et al (2016) Midpoint attractors and species richness: modelling the interaction between environmental drivers and geometric constraints. Ecol Lett 19:1009–1022

    Article  PubMed  Google Scholar 

  • Craft KJ, Pauls SU, Darrow K, Miller SE, Hebert PD, Helgen LE, Novotny V, Weiblen GD (2010) Population genetics of ecological communities with DNA barcodes: an example from New Guinea Lepidoptera. Proc Natl Acad Sci USA 107:5041–5046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Currie DJ, Mittelbach GG, Cornell HV, Field R, Guegan JF, Hawkins BA, Kaufman DM, Kerr JT, Oberdorff T, O’Brien E, Turner JRG (2004) Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol Lett 7:1121–1134

    Article  Google Scholar 

  • Escobar F, Lobo JM, Halffter G (2005) Altitudinal variation of dung beetle (Scarabaeidae: Scarabaeinae) assemblages in the Colombian Andes. Glob Ecol Biogeogr 14:327–337

    Article  Google Scholar 

  • Evans KL, Newson SE, Storch D, Greenwood JJ, Gaston KJ (2008) Spatial scale, abundance and the species-energy relationship in British birds. J Anim Ecol 77:395–405

    Article  PubMed  Google Scholar 

  • Furth DG (2009) Flea beetle diversity of the Sierra Tarahumara, Copper Canyon, Mexico (Chrysomelidae: Alticinae). In: Jolivet P, Santiago-Blay JA, Schmitt M (eds) Research on Chrysomelidae 2. Brill, pp 131–151

  • Furth DG, Longino JT, Paniagua M (2003) Survey and quantitative assessment of flea beetle diversity in a Costa Rican rainforest (Coleoptera: Chrysomelidae: Alticinae). In: Furth DG (ed) Special topics in leaf beetle biology. Pensoft, pp 1–24

  • Garcia-Robledo C, Kuprewicz EK, Staines CL, Erwin TL, Kress WJ (2016) Limited tolerance by insects to high temperatures across tropical elevational gradients and the implications of global warming for extinction. Proc Natl Acad Sci USA 113:680–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghalambor CK, Huey RB, Martin PR, Tewksbury JJ, Wang G (2006) Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp Biol 46:5–17

    Article  PubMed  Google Scholar 

  • Gómez-Zurita J, Hunt T, Vogler AP (2008) Multilocus ribosomal RNA phylogeny of the leaf beetles (Chrysomelidae). Cladistics 24:34–50

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2011) Estimating species richness. In: Magurran A, McGill B (eds) Biological diversity: frontiers in measurement and assessment. Oxford University Press, Oxford, pp 39–54

  • Graham CH, Carnaval AC, Cadena CD, Zamudio KR, Roberts TE, Parra JL, McCain CM, Bowie RCK, Moritz C, Baines SB, Schneider CJ, Van Der Wal J, Rahbek C, Kozak KH, Sanders NJ (2014) The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37:711–719

    Article  Google Scholar 

  • Harrison S, Davies KF, Safford HD, Viers JH (2006) Beta diversity and the scale-dependence of the productivity-diversity relationship: a test in the Californian serpentine flora. J Ecol 94:110–117

    Article  Google Scholar 

  • Hawkins BA, Diniz-Filho JAF, Weis AE (2005) The mid-domain effect and diversity gradients: is there anything to learn? Am Nat 166:E140–E143

    Article  PubMed  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc B 270:313–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homeier J, Werner FA, Gradstein SR, Breckle S, Richter M (2008) Potential vegetation and floristic composition of Andean forests in South Ecuador, with a focus on the RBSF. In: Beck E, Bendix J, Kottke I, Makeschin F, Mosandl R (eds) Gradients in a tropical mountain ecosystem of Ecuador. Springer, pp 87–100

  • Homeier J, Breckle SW, Guenter S, Rollenbeck RT, Leuschner C (2010) Tree diversity, forest structure and productivity along altitudinal and topographical gradients in a species-rich Ecuadorian montane rain forest. Biotropica 42:140–148

    Article  Google Scholar 

  • Jolivet P, Petitpierre E, Hsiao TH (1988) Biology of Chrysomelidae. Kluwer Academic Publishers, Dordrecht, Netherlands

  • Kessler M, Salazar L, Homeier J, Kluge J (2014) Species richness-productivity relationships of tropical terrestrial ferns at regional and local scales. J Ecol 102:1623–1633

    Article  Google Scholar 

  • Körner C (2000) Why are there global gradients in species richness? Mountains might hold the answer. Trends Ecol Evol 15:513–514

    Article  Google Scholar 

  • Kozak KH, Wiens JJ (2010) Niche conservatism drives elevational diversity patterns in Appalachian salamanders. Am Nat 176:40–54

    Article  PubMed  Google Scholar 

  • Kraft NJB, Comita LS, Chase JM, Sanders NJ, Swenson NG, Crist TO, Stegen JC, Vellend M, Boyle B, Anderson MJ, Cornell HV, Davies KF, Freestone AL, Inouye BD, Harrison SP, Myers JA (2011) Disentangling the drivers of beta diversity along latitudinal and elevational gradients. Science 333:1755–1758

    Article  CAS  PubMed  Google Scholar 

  • McCain CM, Grytnes JA (2010) Elevational gradients in species richness. In: Encyclopedia of life sciences (ELS). Wiley, Chichester, UK, pp 1–10

  • McKenna DD, Farrell BD (2006) Tropical forests are both evolutionary cradles and museums of leaf beetle diversity. Proc Natl Acad Sci USA 103:10947–10951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331

    Article  PubMed  Google Scholar 

  • Moser G, Hertel D, Leuschner C (2007) Altitudinal change in LAI and stand leaf biomass in tropical montane forests: a transect study in Ecuador and a pan-tropical meta-analysis. Ecosystems 10:924–935

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  CAS  PubMed  Google Scholar 

  • Nogués-Bravo D, Araujo M, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–220

    Article  PubMed  Google Scholar 

  • Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Olson DM (1994) The distribution of leaf-litter invertebrates along a neotropical altitudinal gradient. J Trop Ecol 10:129–150

    Article  Google Scholar 

  • Pellissier L, Fiedler K, Ndribe C, Dubuis A, Pradervand JN, Guisan A, Rasmann S (2012) Shifts in species richness, herbivore specialization, and plant resistance along elevation gradients. Ecol Evol 2:1818–1825

    Article  PubMed  PubMed Central  Google Scholar 

  • Peters MK, Hemp A, Appelhans T et al (2016) Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat Commun 7:13736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness. Ecol Lett 8:224–239

    Article  Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge, UK

  • Sánchez-Reyes UJ, Nino-Maldonado S, Jones RW (2014) Diversity and altitudinal distribution of Chrysomelidae (Coleoptera) in Peregrina Canyon, Tamaulipas, Mexico. Zookeys 417:103–132

    Article  Google Scholar 

  • Sanders NJ (2002) Elevational gradients in ant species richness: area, geometry, and Rapoport’s rule. Ecography 25:25–32

    Article  Google Scholar 

  • Sanders NJ, Rahbek C (2012) The patterns and causes of elevational diversity gradients. Ecography 35:1–3

    Article  Google Scholar 

  • Smith M, Hallwachs W, Janzen DH (2014) Diversity and phylogenetic community structure of ants along a Costa Rican elevational gradient. Ecography 37:720–731

    Article  Google Scholar 

  • Srivastava DS, Lawton JH (1998) Why more productive sites have more species: an experimental test of theory using tree-hole communities. Am Nat 152:510–529

    CAS  PubMed  Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    Article  CAS  PubMed  Google Scholar 

  • Stein A, Gerstner K, Kreft H (2014) Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecol Lett 17:866–880

    Article  PubMed  Google Scholar 

  • Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Evol 44:261–280

    Article  Google Scholar 

  • Takyu M, Aiba SI, Kitayama K (2002) Effects of topography on tropical lower montane forests under different geological conditions on Mount Kinabalu, Borneo. Plant Ecol 159:35–49

    Article  Google Scholar 

  • Thormann B, Raupach MJ, Wagner T et al (2011) Testing a short nuclear marker for inferring staphylinid beetle diversity in an African Tropical Rain Forest. PLoS One 6:e18101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thormann B, Ahrens D, Marín Armijos D, Peters MK, Wagner T, Wägele JW (2016) Exploring the leaf beetle fauna (Coleoptera: chrysomelidae) of an Ecuadorian mountain forest using DNA barcoding. PLoS One 11(2):e0148268

    Article  PubMed  PubMed Central  Google Scholar 

  • Wagner T (2007) Monolepta Chevrolat, 1837, the most speciose galerucine taxon: redescription of the type species Monolepta bioculata (Fabricius, 1781) and key to related genera from (Chrysomelidae, Coleoptera). J Nat Hist 41:81–100

    Article  Google Scholar 

  • Werner FA, Homeier J (2015) Is tropical montane forest heterogeneity promoted by a resource-driven feedback cycle? Evidence from nutrient relations, herbivory and litter decomposition along a topographical gradient. Funct Ecol 29:430–440

    Article  Google Scholar 

  • Wolf K, Veldkamp E, Homeier J, Martinson GO (2011) Nitrogen availability links forest productivity, soil nitrous oxide and nitric oxide fluxes of a tropical montane forest in southern Ecuador. Glob Biogeochem Cy 25:GB4009

  • Zapata FA, Gaston KJ, Chown SL (2005) The mid-domain effect revisited. Am Nat 166:E144–E148

    Article  PubMed  Google Scholar 

  • Zhang J, Kapli P, Pavlidis P, Stamatakis A (2013) A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the Ministerio del Ambiente, Ecuador, for the good cooperation and for the permission to carry out research and to Naturaleza y Cultura Internacional (NCI) for granting us access to study sites. We thank Carlos Iñiguez Armijos (UTPL) for administrative and logistic support and Clifford Keil for welcoming us at the Museum of Invertebrates at Pontificia Universidad Católica del Ecuador (PUCE), Quito. We thank Jürgen Homeier for providing maps and information about the study area. Thanks to our student helpers from Ecuador and Germany who supported field- and laboratory-work. The study was made possible by a research grant (WA 530/46-1) of the Deutsche Forschungsgemeinschaft (DFG).

Author information

Authors and Affiliations

Authors

Contributions

JWW, BT and MKP conceived and designed the study. CIE and DMA provided logistic infrastructure and organization of field work in Ecuador. BT performed the sampling, laboratory works and data processing. TW conducted taxonomic sorting. BT, AD and MKP analyzed the data. BT wrote the initial version of the manuscript with input from MKP; all authors contributed considerably to the final version of the manuscript.

Corresponding author

Correspondence to Marcell K. Peters.

Additional information

Communicated by Nina Farwig.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thormann, B., Ahrens, D., Espinosa, C.I. et al. Small-scale topography modulates elevational α-, β- and γ-diversity of Andean leaf beetles. Oecologia 187, 181–189 (2018). https://doi.org/10.1007/s00442-018-4108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-018-4108-4

Keywords

Navigation