Skip to main content

Advertisement

Log in

Food web efficiency differs between humic and clear water lake communities in response to nutrients and light

  • Ecosystem ecology - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

This study demonstrates that clear and humic freshwater pelagic communities respond differently to the same environmental stressors, i.e. nutrient and light availability. Thus, effects on humic communities cannot be generalized from existing knowledge about these environmental stressors on clear water communities. Small humic lakes are the most numerous type of lake in the boreal zone, but little is known about how these lakes will respond to increased inflows of nutrients and terrestrial dissolved organic C (t-DOC) due to climate change and increased human impacts. Therefore, we compared the effects of nutrient addition and light availability on pelagic humic and clear water lake communities in a mesocosm experiment. When nutrients were added, phytoplankton production (PPr) increased in both communities, but pelagic energy mobilization (PEM) and bacterial production (BP) only increased in the humic community. At low light conditions, the addition of nutrients led to increased PPr only in the humic community, suggesting that, in contrast to the clear water community, humic phytoplankton were already adapted to lower ambient light levels. Low light significantly reduced PPr and PEM in the clear water community, but without reducing total zooplankton production, which resulted in a doubling of food web efficiency (FWE = total zooplankton production/PEM). However, total zooplankton production was not correlated with PEM, PPr, BP, PPr:BP or C:nutrient stoichiometry for either community type. Therefore, other factors such as food chain length, food quality, ultra-violet radiation or duration of the experiment, must have determined total zooplankton production and ultimately FWE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–l
Fig. 3a–l
Fig. 4a–j

Similar content being viewed by others

References

  • Ahlgren G (1983) Comparison of methods for estimation of phytoplankton carbon. Arch Hydrobiol 98:489–508

    CAS  Google Scholar 

  • Andersson A, Jurgensone I, Rowe OF, Simonelli P, Bignert A, Lundberg E, Karlsson J (2013) Can humic water discharge counteract eutrophication in coastal waters? PLoS One 8(4):e61293. doi:10.1371/journal.pone.0061293

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ask J, Karlsson J, Persson L, Ask P, Bystrom P, Jansson M (2009) Terrestrial organic matter and light penetration: effects on bacterial and primary production in lakes. Limnol Oceanogr 54:2034–2040. doi:10.4319/lo.2009.54.6.2034

    Article  Google Scholar 

  • Berglund J, Muren U, Bamstedt U, Andersson A (2007) Efficiency of a phytoplankton-based and a bacteria-based food web in a pelagic marine system. Limnol Oceanogr 52:121–131

    Article  CAS  Google Scholar 

  • Bergström AK, Jansson M (2000) Bacterioplankton production in humic Lake Ortrasket in relation to input of bacterial cells and input of allochthonous organic carbon. Microb Ecol 39:101–115

    Article  PubMed  Google Scholar 

  • Bērzinš B, Bertilsson J (1990) Occurrence of limnic microcrustaceans in relation to pH and humic content in Swedish water bodies. Hydrobiologia 199:65–71. doi:10.1007/bf00007834

    Article  Google Scholar 

  • Blackburn N, Hagström Å, Wikner J, Cuadros-Hansson R, Bjørnsen PK (1998) Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. Appl Environ Microbiol 64:3246–3255

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bottrell HH, Duncan A, Gliwicz ZM, Grygierek E, Herzig A, Hillbrichtilkowska A, Kurasawa H, Larsson P, Weglenska T (1976) Review of some problems in zooplankton production studies. Norw J Zool 24:419–456

    Google Scholar 

  • Carpenter SR, Cole JJ, Kitchell JF, Pace ML (1998) Variable productivity in whole-lake experiments: roles of dissolved organic carbon, phosphorus and grazing. Limnol Oceanogr 43:73–80

    Article  CAS  Google Scholar 

  • Cashman MJ, Wehr JD, Truhn K (2013) Elevated light and nutrients alter the nutritional quality of stream periphyton. Freshwater Biol 58:1447–1457. doi:10.1111/fwb.12142

    Article  CAS  Google Scholar 

  • Cole JJ, Carpenter SR, Kitchell JF, Pace ML (2002) Pathways of organic carbon utilization in small lakes: results from a whole-lake C-13 addition and coupled model. Limnol Oceanogr 47:1664–1675

    Article  CAS  Google Scholar 

  • Cole JJ, Carpenter SR, Kitchell J, Pace ML, Solomon CT, Weidel B (2011) Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proc Natl Acad Sci USA 108:1975–1980. doi:10.1073/pnas.1012807108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dahlgren K, Andersson A, Larsson U, Hajdu S, Bamstedt U (2010) Planktonic production and carbon transfer efficiency along a north-south gradient in the Baltic Sea. Mar Ecol Prog Ser 409:77–94. doi:10.3354/meps08615

    Article  Google Scholar 

  • del Giorgio PA, Cole JJ (1998) Bacterial growth efficiency in natural aquatic systems. Annu Rev Ecol Syst 29:503–541

    Article  Google Scholar 

  • Dickman EM, Newell JM, Gonzalez MJ, Vanni MJ (2008) Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proc Natl Acad Sci USA 105:18408–18412. doi:10.1073/pnas.0805566105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drakare S, Blomqvist P, Bergstrom AK, Jansson M (2002) Primary production and phytoplankton composition in relation to DOC input and bacterioplankton production in humic Lake Ortrasket. Freshwater Biol 47:41–52. doi:10.1046/j.1365-2427.2002.00779.x

    Article  CAS  Google Scholar 

  • Drakare S, Blomqvist P, Bergstrom AK, Jansson M (2003) Relationships between picophytoplankton and environmental variables in lakes along a gradient of water colour and nutrient content. Freshwater Biol 48:729–740

    Article  Google Scholar 

  • Dubinsky Z, Stambler N (2009) Photoacclimation processes in phytoplankton: mechanisms, consequences, and applications. Aquat Microb Ecol 56:163–176. doi:10.3354/ame01345

    Article  Google Scholar 

  • Evans CD, Jones TG, Burden A, Ostle N, Zielinski P, Cooper MDA, Peacock M, Clark JM, Oulehle F, Cooper D, Freeman C (2012) Acidity controls on dissolved organic carbon mobility in organic soils. Glob Change Biol 18:3317–3331. doi:10.1111/j.1365-2486.2012.02794.x

    Article  Google Scholar 

  • Faithfull CL, Bergstrom AK, Vrede T (2011a) Effects of nutrients and physical lake characteristics on bacterial and phytoplankton production: a meta-analysis. Limnol Oceanogr 56:1703–1713. doi:10.4319/lo.2011.56.5.1703

    CAS  Google Scholar 

  • Faithfull CL, Wenzel A, Vrede T, Bergstrom AK (2011b) Testing the light: nutrient hypothesis in an oligotrophic boreal lake. Ecosphere 2 doi:10.1890/es11-00223.1

  • Forsström L, Roiha T, Rautio M (2013) Responses of microbial food web to increased allochthonous DOM in an oligotrophic subarctic lake. Aquat Microb Ecol 68:171–184. doi:10.3354/ame01614

    Article  Google Scholar 

  • Geddes P (2009) Decoupling carbon effects and UV protection from terrestrial subsidies on pond zooplankton. Hydrobiologia 628:47–66. doi:10.1007/s10750-009-9745-5

    Article  CAS  Google Scholar 

  • Ha SY, Joo HM, Kang SH, Ahn IY, Shin KH (2014) Effect of ultraviolet irradiation on the production and composition of fatty acids in plankton in a sub-Antarctic environment. J Oceanogr 70:1–10. doi:10.1007/s10872-013-0207-3

    Article  CAS  Google Scholar 

  • Hansson L-A, Nicolle A, Graneli W, Hallgren P, Kritzberg E, Persson A, Bjork J, Nilsson PA, Bronmark C (2013) Food-chain length alters community responses to global change in aquatic systems. Nat Clim Change 3:228–233. doi:10.1038/nclimate1689

    Article  Google Scholar 

  • Hessen DO, Blomqvist P, Dahl-Hansen G, Drakare S, Lindstrom ES (2004) Production and food web interactions of Arctic freshwater plankton and responses to increased DOC. Arch Hydrobiol 159:289–307

    Article  Google Scholar 

  • Holtgrieve GW, Schindler DE, Hobbs WO, Leavitt PR, Ward EJ, Bunting L, Chen G, Finney BP, Gregory-Eaves I, Holmgren S, Lisac MJ, Lisi PJ, Nydick K, Rogers LA, Saros JE, Selbie DT, Shapley MD, Walsh PB, Wolfe AP (2011) A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. Science 334:1545–1548. doi:10.1126/science.1212267

    Article  CAS  PubMed  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. Intergovernmental panel on climate change, fourth assessment report. Cambridge University Press, Cambridge, UK, pp 1–23

  • Jäger CG, Diehl S, Schmidt GM (2008) Influence of water-column depth and mixing on phytoplankton biomass, community composition, and nutrients. Limnol Oceanogr 53:2361–2373

    Article  Google Scholar 

  • Jansson M, Bergstrom AK, Blomqvist P, Drakare S (2000) Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81:3250–3255

    Article  Google Scholar 

  • Jansson M, Karlsson J, Blomqvist P (2003) Allochthonous organic carbon decreases pelagic energy mobilization in lakes. Limnol Oceanogr 48:1711–1716

    Article  CAS  Google Scholar 

  • Kalff J (2003) Limnology: inland water ecosystems. Prentice-Hall, New Jersey

    Google Scholar 

  • Karlsson J, Jansson M, Jonsson A (2002) Similar relationships between pelagic primary and bacterial production in clearwater and humic lakes. Ecology 83:2902–2910

    Article  Google Scholar 

  • Karlsson J, Bystrom P, Ask J, Ask P, Persson L, Jansson M (2009) Light limitation of nutrient-poor lake ecosystems. Nature 460:506–580. doi:10.1038/nature08179

    Article  CAS  PubMed  Google Scholar 

  • Kissman CEH, Williamson CE, Rose KC, Saros JE (2013) Response of phytoplankton in an alpine lake to inputs of dissolved organic matter through nutrient enrichment and trophic forcing. Limnol Oceanogr 58:867–880. doi:10.4319/lo.2013.58.3.0867

    CAS  Google Scholar 

  • Klug JL (2005) Bacterial response to dissolved organic matter affects resource availability for algae. Can J Fish Aquat Sci 62:472–481. doi:10.1139/f04-229

    Article  CAS  Google Scholar 

  • Kreutzweiser DP, Hazlett PW, Gunn JM (2008) Logging impacts on the biogeochemistry of boreal forest soils and nutrient export to aquatic systems: a review. Environ Rev 16:157–179. doi:10.1139/a08-006

    Article  CAS  Google Scholar 

  • Lefebure R, Degerman R, Andersson A, Larsson S, Eriksson LO, Bamstedt U, Bystrom P (2013) Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production. Glob Change Biol 19:1358–1372. doi:10.1111/gcb.12134

    Article  CAS  Google Scholar 

  • Ma Z, Li W, Shen A, Gao K (2013) Behavioral responses of zooplankton to solar radiation changes: in situ evidence. Hydrobiologia 711:155–163. doi:10.1007/s10750-013-1475-z

    Article  Google Scholar 

  • Martinez-Garcia S, Fernandez E, Alvarez-Salgado XA, Gonzalez J, Lonborg C, Maranon E, Moran XAG, Teira E (2010) Differential responses of phytoplankton and heterotrophic bacteria to organic and inorganic nutrient additions in coastal waters off the NW Iberian Peninsula. Mar Ecol Prog Ser 416:17–33. doi:10.3354/meps08776

    Article  CAS  Google Scholar 

  • Menzel DW, Corwin N (1965) The measurement of total phosphorus in seawater based on the liberation of organically bound fractions by persulfate oxidation. Limnol Oceanogr 10:280–282

    Article  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD, de Wit HA, Forsius M, Hogasen T, Wilander A, Skjelkvale BL, Jeffries DS, Vuorenmaa J, Keller B, Kopacek J, Vesely J (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–539. doi:10.1038/nature06316

    Article  CAS  PubMed  Google Scholar 

  • Nagata T (1986) Carbon and nitrogen content of natural planktonic bacteria. Appl Environ Microbiol 52:28–32

    PubMed Central  CAS  PubMed  Google Scholar 

  • Persson J, Brett MT, Vrede T, Ravet JL (2007) Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer (Daphnia) in pelagic freshwater food webs. Oikos 116:1152–1163. doi:10.1111/j.2007.0030-1299.15639.x

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2014) Linear and non-linear mixed effects models. Package ‘nlme’ 3.1-177. http://CRAN.R-project.org/package=nlme

  • Qualls RG, Haines BL (1991) Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72:254–266. doi:10.2307/1938919

    Article  Google Scholar 

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org/

  • Salonen K, Sarvala J, Hakala I, Viljanen M-L (1976) The relation of energy and organic carbon in aquatic invertebrates. Limnol Oceanogr 21:724–730

    Article  CAS  Google Scholar 

  • Sandberg J, Andersson A, Johansson S, Wikner J (2004) Pelagic food web structure and carbon budget in the northern Baltic Sea: potential importance of terrigenous carbon. Mar Ecol Prog Ser 268:13–29. doi:10.3354/meps268013

    Article  Google Scholar 

  • Smith DC, Azam F (1992) A simple, economical method for measuring bacterial protein sythesis rates in seawater using 3H-leucine. Marine Microbial Food Webs 6:107–114

    Google Scholar 

  • Sobek S, Tranvik LJ, Prairie YT, Kortelainen P, Cole JJ (2007) Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnol Oceanogr 52:1208–1219

    Article  CAS  Google Scholar 

  • Steinberg CEW (2003) Ecology of humic substances in freshwaters. Springer, Berlin

    Book  Google Scholar 

  • Sterner RW, Elser JJ, Fee EJ, Guildford SJ, Chrzanowski TH (1997) The light:nutrient ratio in lakes: the balance of energy and materials affects ecosystem structure and process. Am Nat 150:663–684

    Article  CAS  PubMed  Google Scholar 

  • Vadstein O (2000) Heterotrophic, planktonic bacteria and cycling of phosphorus—phosphorus requirements, competitive ability, and food web interactions. Adv Microb Ecol 16(16):115–167

    Article  CAS  Google Scholar 

  • Wenzel A, Bergstrom A-K, Jansson M, Vrede T (2012) Survival, growth and reproduction of Daphnia galeata feeding on single and mixed Pseudomonas and Rhodomonas diets. Freshwater Biol 57:835–846. doi:10.1111/j.1365-2427.2012.02751.x

    Article  CAS  Google Scholar 

  • Weyhenmeyer GA, Karlsson J (2009) Nonlinear response of dissolved organic carbon concentrations in boreal lakes to increasing temperatures. Limnol Oceanogr 54:2513–2519. doi:10.4319/lo.2009.54.6_part_2.2513

    Article  CAS  Google Scholar 

  • Wilkinson GM, Carpenter SR, Cole JJ, Pace ML, Yang C (2013) Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. Freshwater Biol 58:2037–2049. doi:10.1111/fwb.12189

    Article  Google Scholar 

  • Wissel B, Boeing WJ, Ramcharan CW (2003) Effects of water color on predation regimes and zooplankton assemblages in freshwater lakes. Limnol Oceanogr 48:1965–1976

    Article  Google Scholar 

  • Wu CH, Dahms HU, Cheng SH, Hwang JS (2011) Effects of food and light on naupliar swimming behavior of Apocyclops royi and Pseudodiaptomus annandalei (Crustacea, Copepoda). Hydrobiologia 666:167–178. doi:10.1007/s10750-011-0631-6

    Article  Google Scholar 

  • Zellmer ID, Arts MT, Abele D, Humbeck K (2004) Evidence of sublethal damage in Daphnia (Cladocera) during exposure to solar UV radiation in subarctic ponds. Arct Antarct Alp Res 36:370–377

    Article  Google Scholar 

Download references

Acknowledgments

We thank Anneli Lagesson and Elsa Nilsson for help in the field and two anonymous reviewers for their comments on the manuscript. This study was part of the Lake Ecosystem Response to Environmental Change (LEREC) and was supported with grants from the Wallenberg foundation and the Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning (Formas).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. L. Faithfull.

Additional information

Communicated by Ulrich Sommer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faithfull, C.L., Mathisen, P., Wenzel, A. et al. Food web efficiency differs between humic and clear water lake communities in response to nutrients and light. Oecologia 177, 823–835 (2015). https://doi.org/10.1007/s00442-014-3132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-014-3132-2

Keywords

Navigation