Skip to main content
Log in

Context-dependent resistance against butterfly herbivory in a polyploid herb

  • Plant-microbe-animal interactions - Original research
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Spatial variation in biotic interactions and natural selection are fundamental parts of natural systems, and can be driven by differences in both trait distributions and the local environmental context of the interaction. Most studies of plant–animal interactions have been performed only in natural settings, making it difficult to disentangle the effects of traits and context. To assess the relative importance of trait differences and environmental context for among-population variation in plant resistance to herbivory, we compared oviposition by the butterfly Anthocharis cardamines on two ploidy types of the herb Cardamine pratensis under experimentally controlled conditions with oviposition in natural populations. Under controlled conditions, plants from octoploid populations were significantly more preferred than plants from tetraploid populations. This difference was largely mediated by differences in flower size. Among natural populations, there was no difference in oviposition rates between the two ploidy types. Our results suggest that differences in oviposition rates among populations of the two cytotypes in the field are caused mainly by differences in environmental context, and that the higher attractiveness of octoploids to herbivores observed under common environmental conditions is balanced by the fact that they occur in habitats which harbor lower densities of butterflies. This illustrates that spatial variation in biotic interactions is the net result of differences in trait distributions of the interacting organisms and differences in environmental context, and that variation in both traits and context are important in understanding species interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal AA (2000) Specificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars. Oikos 89:493–500. doi:10.1034/j.1600-0706.2000.890308.x

    Article  Google Scholar 

  • Agrawal AA, Lau JA, Hambäck PA (2006) Community heterogeneity and the evolution of interactions between plants and insect herbivores. Q Rev Biol 81:349–376. doi:10.1086/511529

    Article  PubMed  Google Scholar 

  • Agrawal AA, Ackerly DD, Adler F, Arnold AE, Cáceres C, Doak DF, Post E, Hudson PJ, Maron J, Mooney KA, Power M, Schemske D, Stachowicz J, Strauss S, Turner MG, Werner E (2007) Filling key gaps in population and community ecology. Front Ecol Environ 5:145–152. doi:10.1890/1540-9295(2007)5[145:FKGIPA]2.0.CO;2

    Article  Google Scholar 

  • Arvanitis L, Wiklund C, Ehrlén J (2007) Butterfly seed predation: effects of landscape characteristics, plant ploidy level and population structure. Oecologia 152:275–285. doi:10.1007/s00442-007-0659-5

    Article  PubMed  Google Scholar 

  • Arvanitis L, Wiklund C, Ehrlén J (2008) Plant ploidy level influences selection by butterfly seed predators. Oikos 117:1020–1025. doi:10.1111/j.2008.0030-1299.16347.x

    Article  Google Scholar 

  • Arvanitis L, Wiklund C, Münzbergova Z, Dahlgren JP, Ehrlén J (2010) Novel antagonistic interactions associated with plant polyploidization influence trait selection and habitat preference. Ecol Lett 13:130–337. doi:10.1111/j.1461-0248.2009.01429.x

    Article  Google Scholar 

  • Benkman CW, Holimon WC, Smith JW (2001) The influence of a competitor on the geographic mosaic of coevolution between crossbills and lodgepole pine. Evolution 55:282–294. doi:10.1111/j.0014-3820.2001.tb01293.x

    CAS  PubMed  Google Scholar 

  • Carmona D, Lajeunesse MJ, Johnson TJ (2011) Plant traits that predict resistance to herbivores. Funct Ecol 25:358–367. doi:10.1111/j.1365-2435.2010.01794.x

    Article  Google Scholar 

  • Chickering DM (2002) Learning equivalence classes of bayesian-network structures. J Mach Learn Res 2:445–498

    Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwarts MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365. doi:10.1016/j.tree.2007.04.003

    Article  PubMed  Google Scholar 

  • Courtney SP (1981) Coevolution of Pierid butterflies and their cruciferous foodplants III. Anthocharis cardamines (L.) survival, development and oviposition on different host plants. Oecologia 51:91–96. doi:10.1007/BF00344658

    Article  Google Scholar 

  • Courtney SP (1982) Coevolution of Pierid butterflies and their cruciferous foodplants IV. crucifer apparency and Anthocharis cardamines (L.) oviposition. Oecologia 52:258–265. doi:10.1007/BF00363846

    Article  Google Scholar 

  • Courtney SP, Courtney S (1982) The ‘edge effect’ in butterfly oviposition: causality in Anthocharis cardamines and related species. Ecol Entomol 7:131–137

    Article  Google Scholar 

  • Courtney SP, Duggan AE (1983) The population biology of the orange tip butterfly Anthocharis cardamines in Britain. Ecol Entomol 8:271–281. doi:10.1111/j.1365-2311.1983.tb00508.x

    Article  Google Scholar 

  • Dempster JP (1992) Evidence of an oviposition-deterring pheromone in the orange-tip butterfly, Anthocharis cardamines (L). Ecol Entomol 17:83–85. doi:10.1111/j.1365-2311.1992.tb01043.x

    Article  Google Scholar 

  • Dempster JP (1997) The role of larval food resources and adult movement in the population dynamics of the orange-tip butterfly (Anthocharis cardamines). Oecologia 111:549–556. doi:10.1007/s004420050270

    Article  Google Scholar 

  • Duggan AE (1985) Pre-dispersal seed predation by Anthocharis cardamines (Pieridae) in the population dynamics of the perennial Cardamine pratensis (Brassicaceae). Oikos 44:99–106. doi:10.2307/3544049

    Article  Google Scholar 

  • Ehrendorfer F (1980) Polyploidy and distribution. In: Lewis WH (ed) Polyploidy. Plenum, New York, pp 45–60

    Chapter  Google Scholar 

  • Fox J (2006) Teacher’s corner: structural equation modeling with the sem package in R. Struct Equ Modeling 13:465–486. doi:10.1207/s15328007sem1303_7

    Article  Google Scholar 

  • Gross N, Kunstler G, Liancourt P, de Bello F, Nash Suding K, Lavorel S (2009) Linking individual response to biotic interactions with community structure: a trait-based framework. Funct Ecol 23:1167–1178. doi:10.1111/j.1365-2435.2009.01591.x

    Article  Google Scholar 

  • Halverson K, Heard SB, Nason JD, Stireman JO III (2008) Differential attack on diploid, tetraploid, and hexaploid Solidago altissima L. by five insect gallmakers. Oecologia 154:755–761. doi:10.1007/s00442-007-0863-3

    Article  PubMed  Google Scholar 

  • Husband BC (2000) Constraints on polyploid evolution: a test of the minority cytotype exclusion principle. Proc R Soc Lond B 267:217–223. doi:10.1098/rspb.2000.0990

    Article  CAS  Google Scholar 

  • Husband BC, Sabara HA (2003) Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). New Phytol 161:703–713. doi:10.1046/j.1469-8137.2003.00998.x

    Article  Google Scholar 

  • Husband BC, Schemske DW (2000) Ecological mechanisms of reproductive isolation between diploid and tetraploid Chamerion angustifolium. J Ecol 88:689–701. doi:10.1046/j.1365-2745.2000.00481.x

    Article  Google Scholar 

  • Janz N, Thompson JN (2002) Plant polyploidy and host expansion in an insect herbivore. Oecologia 130:570–575. doi:10.1007/s00442-001-0832-1

    Article  Google Scholar 

  • Lehtonen P, Helander M, Wink M, Sporer F, Saikkonen K (2005) Transfer of endophyte-origin defensive alkaloids from a grass to a hemiparasitic plant. Ecol Lett 8:1256–1263. doi:10.1111/j.1461-0248.2005.00834.x

    Article  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25. doi:10.1086/284115

    Article  Google Scholar 

  • Levine JM, Hacker SD, Harley CDG, Bertness MD (1998) Nitrogen effects on an interaction chain in a salt marsh community. Oecologia 117:266–272. doi:10.1007/s004420050657

    Article  Google Scholar 

  • Lövkvist B (1956) The Cardamine pratensis complex. Outlines of its cytogenetics and taxonomy. PhD dissertation, University of Uppsala, Uppsala

  • Michalakis Y, Olivieri I, Renaud F, Raymond M (1992) Pleiotropic action of parasites: how to be a good host. Trends Ecol Evol 7:59–62. doi:10.1016/0169-5347(92)90108-N

    Article  CAS  PubMed  Google Scholar 

  • Morand S, Manning SD, Woolhouse MEJ (1996) Parasite-host coevolution and geographic patterns of parasite infectivity and host susceptibility. Proc R Soc Lond B 263:119–128. doi:10.1098/rspb.1996.0019

    Article  CAS  Google Scholar 

  • Münzbergová Z (2006) Ploidy level interacts with population size and condition to determine the degree of herbivory damage in plant population. Oikos 115:443–452. doi:10.1111/j.2006.0030-1299.15286.x

    Article  Google Scholar 

  • Nuismer SL, Cunningham BM (2005) Selection for phenotypic divergence between diploid and autotetraploid Heuchera grossulariifolia. Evolution 59:1928–1935. doi:10.1554/04-715.1

    PubMed  Google Scholar 

  • Nuismer SL, Thompson JN (2001) Plant polyploidy and non-uniform effects on insect herbivores. Proc R Soc Lond B 268:1937–1940. doi:10.1098/rspb 2001.1760

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Development core team (2013) nlme: Linear and nonlinear mixed effects models. R package version 3.1-108

  • R Core Team (2013) R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria. http://www.R-project.org/

  • Scheines R, Spirtes P, Glymour C, Meek C, Richardson T (1998) The TETRAD project: constraint based aids to causal model specification. Multivar Behav Res 33:65–117. doi:10.1207/s15327906mbr3301_3

    Article  Google Scholar 

  • Segraves KA, Thompson JN (1999) Plant polyploidy and pollination: floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53:1114–1127. doi:10.2307/2640816

    Article  Google Scholar 

  • Sharma HC, Venkateswarulu G, Sharma A (2003) Environmental factors influence the expression of resistance to sorghum midge, Stenodiplosis sorghicola. Euphytica 130:365–375

    Article  Google Scholar 

  • Singer MC, McBride CS (2012) Geographic mosaics of species’ association: a definition and an example driven by plant–insect phenological synchrony. Ecology 93:2658–2673

    Article  PubMed  Google Scholar 

  • Strauss SY, Agrawal AA (1999) The ecology and evolution of plant tolerance to herbivory. Trends Ecol Evol 14:179–185. doi:10.1016/S0169-5347(98)01576-6

    Article  PubMed  Google Scholar 

  • Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Evol Syst 35:435–466. doi:10.1146/annurev.ecolsys.35.112202.130215

    Article  Google Scholar 

  • Thomas CD (1984) Oviposition and egg load assessment by Anthocharis cardamines (L.) (Lepidoptera: pieridae). Entomol Gaz 35:145–148

    Google Scholar 

  • Thompson JN (2005) The geographic mosaic of coevolution. University of Chicago Press, Chicago

    Google Scholar 

  • Thompson JN, Pellmyr O (1992) Mutualism with pollinating seed parasites amid co-pollinators: constraints of specialization. Ecology 73:1780–1791. doi:10.2307/1940029

    Article  Google Scholar 

  • Thompson JN, Cunningham BM, Segraves KA, Althoff DM, Wagner D (1997) Plant polyploidy and insect/plant interactions. Am Nat 150:730–743. doi:10.1086/286091

    Article  CAS  PubMed  Google Scholar 

  • Veteli TO, Tegelberg R, Pusenius J, Sipura M, Julkunen-Tiitto R, Aphalo PJ, Tahvanainen J (2003) Interactions between willows and insect herbivores under enhanced ultraviolet-B radiation. Oecologia 137:312–320. doi:10.1007/s00442-003-1298-0

    Article  CAS  PubMed  Google Scholar 

  • Wiklund C (1984) Egg-laying patterns in butterflies in relation to their phenology and the visual apparency and abundance of their host plants. Oecologia 1:23–29. doi:10.1007/BF00379780

    Article  Google Scholar 

  • Wiklund C, Åhrberg C (1978) Host plants, nectar source plants, and habitat selection of males and females of Anthocharis cardamines (Lepidoptera). Oikos 31:169–183. doi:10.2307/3543560

    Article  Google Scholar 

  • Wiklund C, Friberg M (2009) The evolutionary ecology of generalization: among-year variation in host plant use and offspring survival in a butterfly. Ecology 90:3406–3417. doi:10.1890/08-1138.1

    Article  PubMed  Google Scholar 

  • Xiang H, Chen J (2004) Interspecific variation of plant traits associated with resistance to herbivory among four species of ficus (Moraceae). Ann Bot 94:377–384. doi:10.1093/aob/mch153

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to N. Janz and two anonymous reviewers for comments on the manuscript, and to M. Ahlström, L. Hagström, A. Herrström, J. Oremus and E. Waldén for field assistance. This research was funded by the Swedish Research Council (to J. E.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malin A. E. König.

Additional information

Communicated by Julia Koricheva.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material.

Online resources Fig. 1. The cage experiment setup.

Supplementary material 1 (PDF 142 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

König, M.A.E., Wiklund, C. & Ehrlén, J. Context-dependent resistance against butterfly herbivory in a polyploid herb. Oecologia 174, 1265–1272 (2014). https://doi.org/10.1007/s00442-013-2831-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-013-2831-4

Keywords

Navigation