Skip to main content

Advertisement

Log in

Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem

  • Global change ecology - Original research paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Elevated temperatures and diminished precipitation amounts accompanying climate warming in arid ecosystems are expected to have adverse effects on the photosynthesis of lichen species sensitive to elevated temperature and/or water limitation. This premise was tested by artificially elevating temperatures (increase 2.1–3.8°C) and reducing the amounts of fog and dew precipitation (decrease 30.1–31.9%), in an approximation of future climate warming scenarios, using transparent hexagonal open-top warming chambers placed around natural populations of four lichen species (Xanthoparmelia austroafricana, X. hyporhytida , Xanthoparmelia. sp., Xanthomaculina hottentotta) at a dry inland site and two lichen species (Teloschistes capensis and Ramalina sp.) at a humid coastal site in the arid South African Succulent Karoo Biome. Effective photosynthetic quantum yields (\( \Updelta F/F_{\text{m}}^{\prime } \)) were measured hourly throughout the day at monthly intervals in pre-hydrated lichens present in the open-top warming chambers and in controls which comprised demarcated plots of equivalent open-top warming chamber dimensions constructed from 5-cm-diameter mesh steel fencing. The cumulative effects of the elevated temperatures and diminished precipitation amounts in the open-top warming chambers resulted in significant decreases in lichen \( \Updelta F/F_{\text{m}}^{\prime } \). The decreases were more pronounced in lichens from the dry inland site (decline 34.1–46.1%) than in those from the humid coastal site (decline 11.3–13.7%), most frequent and prominent in lichens at both sites during the dry summer season, and generally of greatest magnitude at or after the solar noon in all seasons. Based on these results, we conclude that climate warming interacting with reduced precipitation will negatively affect carbon balances in endemic lichens by increasing desiccation damage and reducing photosynthetic activity time, leading to increased incidences of mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aptroot A, Van Herk CM (2007) Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts. Environ Pollut 146:293–298

    Article  PubMed  CAS  Google Scholar 

  • Bartošková H, Nauš J, Vŷkruta M (1999) The arrangement of chloroplasts in cells influences the reabsorption of chlorophyll fluorescence emission. The effect of desiccation on the chlorophyll fluorescence spectra of Ryzomnium punctatum leaves. Photosynthesis Res 62:251–260

    Article  Google Scholar 

  • Baruffo L, Tretiach M (2007) Seasonal variation of Fo, Fm and Fv/Fm in an epiphytic population of lichen Punctelia subrudecta (Nyl) Krog. Lichenologist 39:555–565

    Article  Google Scholar 

  • Belnap J, Eldridge D (2003) Disturbance and recovery of biological soil crusts. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Springer, Berlin, pp 363–383

    Chapter  Google Scholar 

  • Belnap J, Büdel B, Lange OL (2001) Biological soil crusts: characteristics and distribution. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function, and management. Ecological studies, vol 150. Springer, Berlin, pp 3–30

    Chapter  Google Scholar 

  • Bilger W, Rimke S, Schreiber U, Lange OL (1989) Inhibition of energy-transfer to photosystem II in lichens by dehydration: different properties of reversibility with green and blue-green phycobionts. J Plant Physiol 134:261–268

    Article  CAS  Google Scholar 

  • Büdel B, Lange OL (1994) The role of cortical and epinecral layers in the lichen genus Peltula. Cryptogamic Bot 4:262–269

    Google Scholar 

  • Calatayud A, Deltoro VI, Barreno E, Del Valle-Tascon S (1997) Changes in in vivo chlorophyll fluorescence in lichen thalli as a function of water content and suggestion of zeaxanthin-associated photoprotection. Physiol Plant 101:93–102

    Article  CAS  Google Scholar 

  • Callaghan TV, Jonasson S (1995) Implications for changes in arctic plant biodiversity from environmental manipulation experiments. In: Chapin FS III, Korner C (eds) Arctic and alpine biodiversity. Ecological studies, vol 113. Springer, New York, pp 151–166

    Google Scholar 

  • Cezanne R, Eichler M, Kirschbaum U, Windisch U (2008) Flechten als anzeiger des klimawandels (lichens as indicators of climate change). Sauteria 15:159–174

    Google Scholar 

  • Climate of South Africa (1986) Climate statistics up to 1984. Weather Bureau 40, Department of Environmental Affairs. Government printer, Pretoria

    Google Scholar 

  • Cornelissen JHC, Callaghan TV, Alatalo JM, Michelsen A, Graglia E, Hartley AE, Hik DS, Hobbie SE, Press MC, Robinson CH et al (2001) Global change and Arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? J Ecol 89:984–994

    Article  Google Scholar 

  • Del Prado R, Sanchoa LG (2007) Dew as a key factor for the distribution pattern of the lichen species Teloschistes lacunosus in the Tabernas desert (Spain). Flora 202:417–428

    Article  Google Scholar 

  • Dodge CW (1971) Some lichens of tropical Africa V. Lecanoraceae to Physciaceae. Beihefte zur Nova Hedwigia 38:1–225

    Google Scholar 

  • Frahm JP, Klaus D (2001) Bryophytes as indicators of recent climate fluctuations in central Europe. Oikos 26:97–104

    Google Scholar 

  • Gauslaa Y, McEvoy M (2005) Seasonal changes in solar radiation drive acclimation of the sun-screening compound parietin in the lichen Xanthoria parietina. Basic Appl Ecol 6:75–82

    Article  CAS  Google Scholar 

  • Gauslaa Y, Solhaug KA (1996) Differences in the susceptibility to light stress between epiphytic lichens of ancient and young boreal forest stands. Funct Ecol 10:344–354

    Article  Google Scholar 

  • Gauslaa Y, Solhaug KA (2000) High-light-intensity damage to the foliose lichen Lobaria pulmonaria within a natural forest: the applicability of chlorophyll fluorescence methods. Lichenologist 32:271–289

    Article  Google Scholar 

  • Golding AJ, Johnson GN (2003) Down regulation of linear and activation of cyclic electron transport during drought. Planta 218:107–114

    Article  PubMed  CAS  Google Scholar 

  • Grabherr G, Gottfried M, Gruber A, Pauli H (1995) Patterns and current changes in alpine plant diversity. In: Chapin FS III, Korner C (eds) Arctic and alpine biodiversity. Springer, Berlin, pp 167–181

    Google Scholar 

  • Hájek J, Barták M, Gloser J (2001) Effects of thallus temperature and hydration on photosynthetic parameters of Cetraria islandica from contrasting habitats. Photosynthetica 39:427–435

    Article  Google Scholar 

  • Hájek J, Barták M, Dubová J (2006) Inhibition of photosynthetic processes in foliose lichens induced by temperature and osmotic stress. Biol Plant 50:624–634

    Article  Google Scholar 

  • Hale ME (1990) A synopsis of the lichen genus Xanthoparmelia (Vainio) Hale (Ascomycotina, Parmeliaceae). Smithsonian Contr Bot 74:1–250

    Article  Google Scholar 

  • Hauck M (2009) Global warming and alternative causes of decline in arctic-alpine and boreal-montane lichens in the North-Western Central Europe. Glob Change Biol 15:2653–2661

    Article  Google Scholar 

  • Henry GHR, Molau U (1997) Tundra plants and climate change. The international tundra experiment (ITEX). Glob Change Biol 3:1–9

    Article  Google Scholar 

  • Hollister RD, Weber PJ (2000) Biotic validation of small open-top chambers in a tundra ecosystem. Glob Change Biol 6:835–842

    Article  Google Scholar 

  • Hulme M, Doherty R, Ngara T, New M, Lister D (2001) African climate change: 1900–2100. Climate Res 17:145–168

    Article  Google Scholar 

  • Insarov G, Insarova I (2002) Long term monitoring of the response of lichen communities to climate change in the Central Negev Highlands (Israel). Biblioth Lichenol 82:209–220

    Google Scholar 

  • IPCC (2007) Climate change 2007: the scientific basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group 1 to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Kappen L (1988) Ecophysiological relationships in different climatic regions. In: Galun M (ed) Handbook of lichenology. CRC Press, Boca Raton, pp 37–100

    Google Scholar 

  • Kappen L, Shroeter B, Green TGA, Seppelt RD (1998) Chlorophyll a fluorescence and CO2 exchange of Umbilicaria apnia under extreme light stress in the cold. Oecologia 113:325–331

    Article  Google Scholar 

  • Lange OL (1970) Experimentell-okologische Untersuchugen an Flechten der Negev-Wüste, I. CO2-Gaswechsel von Ramalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiode. Flora 159:36–62

    Google Scholar 

  • Lange OL (2003) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation II. Diel and seasonal patterns of net photosynthesis and respiration. Flora 198:55–70

    Google Scholar 

  • Lange OL, Tenhunen JD, Harley PC, Walz H (1985) Lichen physiology and cell biology. In: Brown DH et al (eds) Method for field measurements of CO2-exchange. The diurnal changes in net photosynthesis and photosynthetic capacity of lichens under Mediterranean climatic conditions. Plenum Press, London, pp 23–39

    Google Scholar 

  • Lange OL, Kilian E, Ziegler H (1990) Photosynthese von Blattflechten mit hygroskopischen Thallusbewegungen bei Befeuchtung durch Wasserdampf oder mit flüssigem Wasser. Biblioth Lichenol 38:311–323

    Google Scholar 

  • Lange OL, Meyer A, Ullmann I, Zellner H (1991) Mikroklima, Wassergehalt und Photosynthese von Flechten in der küstennahen Nebelzone der Namib-Wüste: Messungen während der herbstlichen Witterungsperiode. Flora 185:233–266

    Google Scholar 

  • Lange OL, Meyer A, Zellner H, Heber U (1994) Photosynthesis and water relations of lichen soil-crusts: field measurements in the coastal fog zone of the Namib desert. Funct Ecol 8:253–264

    Article  Google Scholar 

  • Lange OL, Belnap J, Reichenberger H (1998) Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Funct Ecol 12:195–202

    Article  Google Scholar 

  • Lange OL, Leisner JMR, Bilger W (1999) Chlorophyll fluorescence characteristics of the cyanobacterial lichen Peltigera rufescens under field conditions II. Diel and annual distribution of metabolic activity and possible mechanisms to avoid photoinhibition. Flora 194:413–430

    Google Scholar 

  • Lange OL, Büdel B, Meyer A, Zellner H, Zotz G (2000) Lichen carbon gain under tropical conditions: water relations and CO2 exchange of three Leptogium species of a lower montane rainforest in Panama. Flora 195:172–190

    Google Scholar 

  • Lange OL, Büdel B, Meyer A, Zellner H, Zotz G (2004) Lichen carbon gain under tropical conditions: water relations and CO2 exchange of Lobariaceae species of a lower montane rainforest in Panama. Lichenologist 36:329–342

    Article  Google Scholar 

  • Lange OL, Green ATG, Melze B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog desert: measurements during two seasons in the field and under controlled conditions. Flora 201:268–280

    Article  Google Scholar 

  • Larson DW (1980) Seasonal change in the pattern of net CO2 exchange in Umbilicaria lichens. New Phytol 84:349–369

    Article  CAS  Google Scholar 

  • Macfarlane JD, Kershaw KA (1978) Thermal sensitivity in lichens. Science 201:739–741

    Article  PubMed  CAS  Google Scholar 

  • MacKellar NC, Hewitson BC, Tadross MA (2007) Namaqualand’s climate: recent historical changes and future scenarios. J Arid Environ 70:604–614

    Article  Google Scholar 

  • Maphangwa KW (2011) Lichen thermal sensitivities, moisture interception and elemental accumulation in an arid South African ecosystem. University Western Cape, Cape Town

  • Matimati I (2009) The relevance of fog and dew precipitation to succulent plant hydrology in an arid South African ecosystem. University Western Cape, Cape Town

  • Matoušková M, Bartošková H, Nauš J, Novotný R (1999) Reaction of photosynthetic apparatus to dark desiccation sensitively detected by the induction of chlorophyll fluorescence quenching. J Plant Physiol 155:399–406

    Article  Google Scholar 

  • Mittermeier RA, Robles-Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier CG, Lamoreux J, Da Fonseca GAB (2004) Hotspots revisited: earth’s biologically richest and most endangered terrestrial ecoregions. Cemex books on nature. Conservation International, Washington, DC

    Google Scholar 

  • Musil CF, Schmeidel U, Midgley GF (2005) Lethal effects of experimental warming approximating a future climate scenario on southern African quartz-field succulents: a pilot study. New Phytol 165:539–547

    Article  PubMed  Google Scholar 

  • Musil CF, Van Heerden PDR, Cilliers CD, Schmiedel U (2009) Mild experimental climate warming induces metabolic impairment and massive mortalities in southern African quartz field succulents. Environ Exp Bot 66:79–87

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858

    Article  PubMed  CAS  Google Scholar 

  • Nash TH III (ed) (1996) Lichen biology. Cambridge University Press, Cambridge

    Google Scholar 

  • Nayaka S, Ranjan S, Saxena P, Pathre UV, Upreti DK, Singh R (2009) Assessing the vitality of Himalayan lichens by measuring chlorophyll fluorescence technique. Curr Sci 97:538–545

    CAS  Google Scholar 

  • Noy-Meir I (1973) Desert ecosystems: environment and producers. Annu Rev Ecol Syst 4:25–51

    Article  Google Scholar 

  • Rosenberg NJ, Blad BL, Verma S (1983) Microclimate: the biological environment. Wiley, New York

    Google Scholar 

  • Rutherford MC, Westfall RH (1986) Biomes of southern Africa––an objective categorization. Mem Bot Surv S Afr 54:1–98

    Google Scholar 

  • Seaward MRD, Coppins BJ (2004) Lichens and hypertrophication. Biblioth Lichenol 88:561–572

    Google Scholar 

  • Sigfridsson B (1980) Some effects of humidity on the light reaction of photosynthesis in the lichens Cladonia implexa and Collema flaccidum. Plant Physiol 49:320–326

    Article  CAS  Google Scholar 

  • Søchting U (2004) Flavoparmelia caperata––a probable indicator of increased temperatures in Denmark. Graphis Scripta 15:53–56

    Google Scholar 

  • Solhaug KA, Gauslaa Y (1996) Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108:412–418

    Article  Google Scholar 

  • Solhaug KA, Gauslaa Y, Nybakken L, Bilger W (2003) UV-induction of sun-screening pigments in lichens. New Phytol 158:91–100

    Article  CAS  Google Scholar 

  • Sparrius LB, Aptroot A (2000) Fellhanera ochracea, a new corticolous lichen species from sheltered habitats in Western Europe. Lichenologist 32:515–520

    Article  Google Scholar 

  • Sparrius LB, Aptroot A (2003) Bacidia adastra, a new sorediate lichen species from Western Europe. Lichenologist 35:275–278

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC, Erasmus BFN, de Siqueira MF, Grainger A, Hannah L, Hughes L, Huntley B, van Jaarsveld AS, Midgley GF, Miles L (2004) Extinction risk from climate change. Nature 427:145–148

    Article  PubMed  CAS  Google Scholar 

  • Van Herk CM, Aptroot A, van Dobben HF (2002) Long-term monitoring in the Netherlands suggests that lichens respond to global warming. Lichenologist 34:141–154

    Article  Google Scholar 

  • Vráblíková H, McEvoy M, Solhaug KA, Barták M, Gauslaa Y (2006) Annual variation in photoacclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina. J Photochem Photobiol B 83:151–162

    Article  PubMed  Google Scholar 

  • Walker MD, Wahren CH, Hollister RD, Henry GHR, Ahlquist LE, Alatalo JM, Bret-Harte MS, Calef MP, Callaghan TV et al (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1436

    Article  PubMed  CAS  Google Scholar 

  • Zedda L, Rambold G (2009) Diversity and ecology of soil lichens in the Knersvlakte (South Africa). Bryologist 112:19–29

    Article  Google Scholar 

  • Zedda L, Gröngröft A, Schultz M, Petersen A, Mills A, Rambold G (2011) Distribution patterns of soil lichens across different biomes of southern Africa. J Arid Environ 75:215–220

    Article  Google Scholar 

  • Zotz G (1999) Altitudinal changes in diversity and abundance of non-vascular epiphytes in the tropics––an ecophysiological explanation. Selbyana 20:256–260

    Google Scholar 

  • Zotz G, Bader MY (2009) Epiphytic Plants in a Changing World-Global: Change Effects on Vascular and Non-Vascular Epiphytes. In: Lüttge U, Beyschlag W, Büdel B, Francis D (eds) Progress in botany, vol 70. Springer, Berlin, pp 147–170

    Chapter  Google Scholar 

  • Zotz G, Winter K (1994) Photosynthesis and carbon gain of the lichen, Leptogium azureum, in a lowland tropical forest. Flora 189:179–186

    Google Scholar 

  • Zotz G, Schultz S, Rottenberger S (2003) Are tropical lowlands a marginal habitat for macrolichens? Evidence from a field study with Parmotrema endosulphureum in Panama. Flora 198:71–77

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mr. S. Snyders for technical support and Prof. Rambold (Bayreuth) for providing TLC facilities for lichen identification. The study was funded by the South African National Biodiversity Institute and partly subsidized by BIOTA (Phase III) program financed by the German Federal Ministry of Education and Research (Promotion number 01LC0624A2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles F. Musil.

Additional information

Communicated by Hermann Heilmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maphangwa, K.W., Musil, C.F., Raitt, L. et al. Experimental climate warming decreases photosynthetic efficiency of lichens in an arid South African ecosystem. Oecologia 169, 257–268 (2012). https://doi.org/10.1007/s00442-011-2184-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-011-2184-9

Keywords

Navigation