Skip to main content
Log in

Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers

  • Physiological Ecology - Original Paper
  • Published:
Oecologia Aims and scope Submit manuscript

Abstract

Nutritional imbalances between predator and prey are the rule rather than the exception at the lower end of food webs. We investigated the role of different grazers in the propagation of nutritionally imbalanced primary production by using the same primary producers in a three-trophic-level food chain and a four-trophic-level food chain experimental setup. The three-trophic-level food chain consisted of a classic single-cell primary producer (Rhodomonas salina), a metazoan grazer (the copepod Acartia tonsa) and a top predator (the jellyfish Gonionemus vertens), while we added a protozoan grazer (Oxyrrhis marina) as primary consumer to the food chain to establish the four-trophic-level food chain. This setup allowed us to investigate how nutrient-limitation effects change from one trophic level to another, and to investigate the performance of two components of our experimental food chains in different trophic positions. Stoichiometry and fatty acid profiles of the algae showed significant differences between the nutrient-depleted [no N and no P addition (−P), respectively] and the nutrient-replete (f/2) treatments. The differences in stoichiometry could be traced when O. marina was the first consumer. Copepods feeding on these flagellates were not affected by the nutritional imbalance of their prey in their stoichiometry, their respiration rates nor in their developmental rates. In contrast, when copepods were the primary consumer, those reared on the −P algae showed significantly higher respiration rates along with significantly lower developmental rates. In neither of our two experimental food chains did the signals from the base of the food chains travel up to jelly fish, our top predator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen OK, Goldman JC, Caron DA, Dennett MR (1986) Nutrient cycling in a microflagellate food chain. 3. Phosphorus dynamics. Mar Ecol Prog Ser 31:47–55

    Article  CAS  Google Scholar 

  • Andersen T, Elser JJ, Hessen DO (2004) Stoichiometry and population dynamics. Ecol Lett 7:884–900

    Article  Google Scholar 

  • Anderson TR, Pond DW (2000) Stoichiometric theory extended to micronutrients: comparison of the roles of essential fatty acids, carbon, and nitrogen in the nutrition of marine copepods. Limnol Oceanogr 45:1162–1167

    Article  CAS  Google Scholar 

  • Anderson TR, Boersma M, Raubenheimer D (2004) Stoichiometry: linking elements to biochemicals. Ecology 85:1193–1202

    Article  Google Scholar 

  • Attrill MJ, Wright J, Edwards M (2007) Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. Limnol Oceanogr 52:480–485

    Google Scholar 

  • Bakker C (1980) On the distribution of Gonionemus vertens A. Agassiz (Hydrozoa, Limnomedusae), a new species in the eelgrass beds of Lake Grevelingen (S.W. Netherlands). Hydrobiol Bull 14:186–195

    Article  Google Scholar 

  • Bec A, Martin-Creuzburg D, von Elert E (2006) Trophic upgrading of autotrophic picoplankton by the heterotrophic nanoflagellate Paraphysomonas sp. Limnol Oceanogr 51:1699–1707

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    CAS  PubMed  Google Scholar 

  • Boechat IG, Adrian R (2005) Biochemical composition of algivorous freshwater ciliates: you are not what you eat. FEMS Microbiol Ecol 53:393

    Article  CAS  PubMed  Google Scholar 

  • Boersma M (2000) The nutritional quality of P-limited algae for Daphnia. Limnol Oceanogr 45:1157–1161

    Article  CAS  Google Scholar 

  • Boersma M, Becker C, Malzahn AM, Vernooij S (2009) Food chain effects of nutrient limitation in primary producers. Mar Freshwater Res (in press)

  • Chu FLE, Lund ED, Podbesek JA (2008) Quantitative significance of n-3 essential fatty acid contribution by heterotrophic protists in marine pelagic food webs. Mar Ecol Prog Ser 354:85–95

    Article  CAS  Google Scholar 

  • Clemmesen C (1993) Improvements in the fluorimetric determination of the RNA and DNA content of individual marine fish larvae. Mar Ecol Prog Ser 100:177-183

    Google Scholar 

  • Darchambeau F, Faerøvig PJ, Hessen DO (2003) How Daphnia copes with excess carbon in its food. Oecologia 136:335–346

    Article  Google Scholar 

  • Denno RF, Fagan WF (2003) Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 84:2522–2531

    Article  Google Scholar 

  • Desvilettes C, Bourdier G, Amblard C, Barth B (1997) Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshwater Biol 38:629–637

    Article  CAS  Google Scholar 

  • Dickman EM, Newell JM, Gonzalez MJ, Vanni MJ (2008) Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proc Natl Acad Sci USA 105:18408–18412

    Article  CAS  PubMed  Google Scholar 

  • Diehl S, Feißel M (2000) Effects of enrichment on three-level food chains with omnivory. Am Nat 155:200–218

    Article  PubMed  Google Scholar 

  • Elser JJ, Hassett RP (1994) A stoichiometric analysis of the zooplankton-phytoplankton interaction in marine and freshwater ecosystems. Nature 370:211–213

    Article  Google Scholar 

  • Elser JJ et al (2000) Nutritional constraints in terrestrial and freshwater food webs. Nature 408:578–580

    Article  CAS  PubMed  Google Scholar 

  • Farkas T, Fodor E, Kitajka K, Halver JE (2001) Response of fish membranes to environmental temperature. Aquat Res 32:645–655

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Frost PC et al (2006) Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecol Lett 9:774–779

    Article  PubMed  Google Scholar 

  • Goldman JG, Caron DA, Dennett MR (1987) Nutrient cycling in a microflagellate food chain. 4. Phytoplankton-microflagellate interactions. Mar Ecol Prog Ser 38:75–87

    Article  CAS  Google Scholar 

  • Grasshoff K, Kremling K, Erhardt M (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Grover JP, Chrzanowski TH (2006) Stoichiometry and growth kinetics in the “smallest zooplankton” phagotrophic flagellates. Arch Hydrobiol 167:467

    Article  CAS  Google Scholar 

  • Guillard R, Ryther J (1962) Studies of marine planktonic diatoms. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Gulati RD, DeMott WR (1997) The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwater Biol 38:753–768

    Article  Google Scholar 

  • Hessen DO, Anderson TR (2008) Excess carbon in aquatic organisms and ecosystems: physiological, ecological, and evolutionary implications. Limnol Oceanogr 53:1685–1696

    CAS  Google Scholar 

  • Irigoien X, Head RN, Harris RP, Cummings D, Harbour D, Meyer-Harms B (2000) Feeding selectivity and egg production of Calanus helgolandicus in the English Channel. Limnol Oceanogr 45:44–54

    Article  Google Scholar 

  • Jensen T, Hessen D (2007) Does excess dietary carbon affect respiration of Daphnia? Oecologia 152:191

    Article  PubMed  Google Scholar 

  • Jindra M, Sehnal F (1990) Linkage between diet humidity, metabolic water production and heat dissipation in the larvae of Galleria mellonella. Insect Biochem 20:389–395

    Article  CAS  Google Scholar 

  • Kagata H, Ohgushi T (2007) Carbon–nitrogen stoichiometry in the tritrophic food chain willow, leaf beetle, and predatory ladybird beetle. Ecol Res 22:671

    Article  Google Scholar 

  • Klausmeier CA, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174

    Article  CAS  PubMed  Google Scholar 

  • Le Pecq JB, Paoletti C (1966) A new fluorometric method for RNA and DNA determination. Anal Biochem 17:100–107

    Article  CAS  PubMed  Google Scholar 

  • Lee S-M (2001) Review of the lipid and essential fatty acid requirement of rockfish (Sebastes schlegeli). Aquat Res 32:8–17

    Article  CAS  Google Scholar 

  • Lund ED, Chu FE, Harvey E, Adlof R (2008) Mechanism(s) of long chain n-3 essential fatty acid production in two species of heterotrophic protists: Oxyrrhis marina and Gyrodinium dominans. Mar Biol 155:23

    Article  CAS  Google Scholar 

  • Lynam CP, Heath MR, Hay SJ, Brierley AS (2005) Evidence for impacts by jellyfish on North Sea herring recruitment. Mar Ecol Prog Ser 298:157–167

    Article  Google Scholar 

  • Malzahn AM, Aberle N, Clemmesen C, Boersma M (2007) Primary production under nutrient limitation indirectly affects larval fish condition. Limnol Oceanogr 52:2062–2071

    CAS  Google Scholar 

  • Mauchline J (1998) The biology of calanoid copepods. Academic Press, San Diego

    Google Scholar 

  • Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55

    Article  Google Scholar 

  • Müller-Navarra DC (1995) Biochemical versus mineral limitation in Daphnia. Limnol Oceanogr 40:1209–1214

    Article  Google Scholar 

  • Müller-Navarra DC (2008) Food web paradigms: the biochemical view on trophic interactions. Int Rev Hydrobiol 93:489–505

    Article  CAS  Google Scholar 

  • Newsholme EA, Crabtree B (1976) Substrate cycles in metabolic regulation and in heat generation. Biochem Soc Symp 41:61–109

    CAS  PubMed  Google Scholar 

  • Newsholme EA, Crabtree B, Higgins SJ, Thornton SD, Start C (1972) The activities of fructose diphosphatase in flight muscles from bumble-bee and the role of this enzyme in heat generation. Biochem J 128:89–97

    CAS  PubMed  Google Scholar 

  • Paffenhoefer GA, Van Sant KB (1985) The feeding response of a marine planktonic copepod to quantity and quality of particles. Mar Ecol Prog Ser 27:55–65

    Article  Google Scholar 

  • Peters J, Dutz J, Hagen W (2007) Role of essential fatty acids on the reproductive success of the copepod Temora longicornis in the North Sea. Mar Ecol Prog Ser 341:153–163

    Article  CAS  Google Scholar 

  • Plath K, Boersma M (2001) Mineral limitation of zooplankton: stoichiometric constraints and optimal foraging. Ecology 82:1260–1269

    Article  Google Scholar 

  • Purcell JE, Arai MN (2001) Interactions of pelagic cnidarians and ctenophores with fish: a review. Hydrobiologia 451:27–44

    Article  Google Scholar 

  • Reitan KI, Rainuzzo JR, Oie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155:207–221

    Article  Google Scholar 

  • Rhee GY (1978) Effects of N:P atomic ratios and nitrate limitation on algal growth, cell composition, and nitrate uptake. Limnol Oceanogr 23:10–25

    Article  CAS  Google Scholar 

  • Schoo KL, Aberle N, Malzahn AM, Boersma M (2009) Does the nutrient stoichiometry of primary producers affect the secondary consumer Pleurobrachia pileus? Aquat Ecol (in press)

  • Siron R, Giusti G, Berland B (1989) Changes in the fatty-acid composition of Phaeodactylum tricornutum and Dunaliella tertiolecta during growth and under phosphorus deficiency. Mar Ecol Prog Ser 55:95–100

    Article  CAS  Google Scholar 

  • Staples JF, Koen EL, Laverty TM (2004) ‘Futile cycle’ enzymes in the flight muscles of North American bumblebees. J Exp Biol 207:749–754

    Article  CAS  PubMed  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. University Press, Princeton

    Google Scholar 

  • Sterner RW et al (2008) Scale-dependent carbon:nitrogen:phosphorus seston stoichiometry in marine and freshwaters. Limnol Oceanogr 53:1169–1180

    CAS  Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  • Urabe J, Sterner RW (1996) Regulation of herbivore growth by the balance of light and nutrients. Proc Natl Acad Sci 93:8465–8469

    Article  CAS  PubMed  Google Scholar 

  • Vargas CA, Escribano R, Poulet S (2006) Phytoplankton food quality determines time windows for successful zooplankton reproductive pulses. Ecology 87:2992–2999

    Article  PubMed  Google Scholar 

  • Watanabe T, Kitajima C, Fujita S (1983) Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture 34:115–143

    Article  CAS  Google Scholar 

  • Zanotto FP, Gouveia SM, Simpson SJ, Raubenheimer D, Calder PC (1997) Nutritional homeostasis in locusts: is there a mechanism for increased energy expenditure during carbohydrate overfeeding? J Exp Biol 200:2437–2448

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank an anonymous reviewer and Sebastian Diehl for careful reading of the manuscript and their fruitful thoughts and comments, which improved the quality of the manuscript. K. L. S. is funded by the German Science Foundation (DFG AB 289/2-1) and this study is part of the AWI Food Web project. This study complies with the current German law on animal studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arne M. Malzahn.

Additional information

Communicated by Sebastian Diehl.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (53KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malzahn, A.M., Hantzsche, F., Schoo, K.L. et al. Differential effects of nutrient-limited primary production on primary, secondary or tertiary consumers. Oecologia 162, 35–48 (2010). https://doi.org/10.1007/s00442-009-1458-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00442-009-1458-y

Keywords

Navigation